yolo v7训练集路径报错

该代码用于将VOC数据集的XML注解转换成TXT格式,并按训练集、验证集和测试集划分。同时,它还涉及图像的复制以及创建分割文件列表。程序中包含了对XML文件的解析,边界框坐标转换,以及随机抽样以分割训练、验证和测试集。

 

 

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import shutil


sets = [('TrainVal', 'train'), ('TrainVal', 'val'), ('Test', 'test')]

classes = ["mask_weared_incorrect", "with_mask", "without_mask"]


def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)


def convert_annotation(year, image_set, image_id):
in_file = open('VOC%s/Annotations/%s.xml' % (year, image_id))
out_file = open('VOC%s/labels/%s_%s/%s.txt' % (year, year, image_set, image_id), 'w', encoding='utf-8')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)

for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


def copy_images(year, image_set, image_id):
in_file = 'VOC%s/JPEGImages/%s.jpg' % (year, image_id)
out_flie = 'VOC%s/images/%s_%s/%s.jpg' % (year, year, image_set, image_id)
shutil.copy(in_file, out_flie)


wd = getcwd()

for year, image_set in sets:
if not os.path.exists('VOC%s/labels/%s_%s' % (year, year, image_set)):
os.makedirs('VOC%s/labels/%s_%s' % (year, year, image_set))
if not os.path.exists('VOC%s/images/%s_%s' % (year, year, image_set)):
os.makedirs('VOC%s/images/%s_%s' % (year, year, image_set))
image_ids = open('VOC%s/ImageSets/Main/%s.txt' % (year, image_set)).read().strip().split()
list_file = open('VOC%s/%s_%s.txt' % (year, year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOC%s/images/%s_%s/%s.jpg\n' % (wd, year, year, image_set, image_id))
convert_annotation(year, image_set, image_id)
copy_images(year, image_set, image_id)

list_file.close()

创建txt文件的代码如下

# -*- encoding:utf-8 -*-
import os
import random

xmlfilepath = r'F:\v7\VOCData\VOCTranVal\Annotations'
saveBasePath = r'F:\v7\VOCData\VOCTranVal\ImageSets'

trainval_percent = 0.9
train_percent = 0.9
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

print("train and val size", tv)
print("traub suze", tr)
ftrainval = open(os.path.join(saveBasePath, 'F:/v7/VOCData/VOCTranVal/ImageSets/Main/trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath, 'F:/v7/VOCData/VOCTranVal/ImageSets/Main/test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath, 'F:/v7/VOCData/VOCTranVal/ImageSets/Main/train.txt'), 'w')
fval = open(os.path.join(saveBasePath, 'F:/v7/VOCData/VOCTranVal/ImageSets/Main/val.txt'), 'w')

for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

 

 如图路径中有这个文件还是报错

错误如下

F:\yolo\v7\yolov7-main\venv\Scripts\python.exe F:\v7\VOCData\VOCTranVal\ImageSets\Main\voc_label.py 
Traceback (most recent call last):
  File "F:\v7\VOCData\VOCTranVal\ImageSets\Main\voc_label.py", line 63, in <module>
    image_ids = open('VOC%s/ImageSets/Main/%s.txt' % (year, image_set)).read().strip().split()
FileNotFoundError: [Errno 2] No such file or directory: 'VOCTrainVal/ImageSets/Main/train.txt'

进程已结束,退出代码1

小白的脑袋快抠烂了,求解!

<think>我们正在讨论如何为YOLO模型配置data.yaml文件以添加新物品类别。根据引用[1]和引用[3],data.yaml文件是YOLO训练中用于定义数据集路径和类别信息的关键配置文件。同时,引用[2]中展示了使用YOLO进行训练的基本代码结构,其中`model.train(data="data.yaml")`指定了该配置文件。 ### 配置data.yaml文件添加新物品的步骤 #### 1. 理解data.yaml文件结构 data.yaml文件通常包含以下关键字段: ```yaml path: /absolute/path/to/dataset # 数据集根目录绝对路径 train: images/train # 训练集图像相对路径(相对于path) val: images/val # 验证集图像相对路径 test: images/test # 测试集图像相对路径(可选) # 类别名称列表 names: 0: class_name_0 1: class_name_1 ... ``` #### 2. 添加新物品类别 假设原数据集有3个类别(apple, orange, banana),现在要添加一个新类别"pear": ```yaml names: 0: apple 1: orange 2: banana 3: pear # 新增类别 ``` > **重要规则**: > - 类别ID必须从0开始连续编号(0,1,2,...) > - 类别名称必须与标注文件(.txt)中的类别ID对应 #### 3. 完整data.yaml示例 ```yaml # 示例:自定义水果检测数据集 path: /home/user/datasets/fruits train: images/train # 对应实际路径:/home/user/datasets/fruits/images/train val: images/val # 类别定义(注意:ID必须连续!) names: 0: apple 1: orange 2: banana 3: pear # 新增物品 4: peach # 继续添加新物品 ``` #### 4. 标注文件同步更新 添加新类别后,标注文件(.txt)需包含新类别的ID: - 原始标注格式:`<class_id> <x_center> <y_center> <width> <height>`(归一化坐标) - 新增"pear"(ID=3)的标注示例: ``` 3 0.5 0.5 0.2 0.3 ``` #### 5. 多模态扩展(可选参考引用[1]) 若需融合文本信息(如引用[1]所述),可在data.yaml中添加文本数据路径: ```yaml text_data: train: texts/train # 文本训练集路径(相对于path) val: texts/val # 文本验证集路径 text_encoder: bert-base-uncased # 指定文本编码器 ``` ### 验证配置正确性 使用以下代码检查数据集加载是否正常: ```python from ultralytics import YOLO # 尝试加载配置文件(不训练,仅验证) model = YOLO('yolov8n.yaml') model.train(data='data.yaml', epochs=0) ``` 若无报错且显示数据集统计信息,则配置成功。 ### 常见错误排查 1. **路径错误**: - 确保`path`为绝对路径 - 检查`train`/`val`路径是否存在图像 2. **类别ID不连续**: ```yaml # 错误示例(跳过ID=2) names: 0: apple 1: orange 3: pear # 缺失ID=2会导致训练崩溃 ``` 3. **标注文件与类别不匹配**: - 标注文件中出现未定义ID(如ID=5但`names`只有0-3) ### 相关实践技巧 - **小样本新类别**:当新增类别样本较少时,可在配置中设置类别权重: ```yaml class_weights: [1.0, 1.0, 1.0, 2.0] # 对新类别pear(ID=3)赋予双倍权重 ``` 并在训练代码中启用: ```python model.train(data='data.yaml', cls=2.0) # 全局类别权重(或使用class_weights) ``` - **增量训练**:在已有模型上微调新类别 ```python model = YOLO('yolov8n.pt') # 加载预训练模型 model.add_class('pear') # 动态添加新类别(需YOLOv8.0.50+) model.train(data='data.yaml', epochs=50, freeze=10) # 先冻结部分层微调 ``` > **注意**:YOLO不同版本(v5/v7/v8/v9)的data.yaml格式基本兼容,但: > - YOLOv5要求`names`使用列表格式:`names: [apple, orange, banana, pear]`[^3] > - YOLOv8同时支持列表和字典格式 通过正确配置data.yaml文件,您可以使YOLO模型识别新增物品类别。实际效果取决于标注质量和训练参数设置[^1][^2][^3]。 §§相关问题§§ 1. 如何为YOLO新增类别准备标注数据? 2.YOLO训练中如何处理类别不平衡问题? 3. YOLO的data.yaml文件与COCO格式数据集如何转换? 4. 如何验证YOLO数据集配置的正确性? 5. YOLOv5和YOLOv8的data.yaml文件格式有什么区别?</think>### 如何在YOLO模型的data.yaml文件中配置新类别或物品 YOLO的`data.yaml`文件是定义数据集结构和类别的核心配置文件。添加新物品类别需要以下步骤: #### 1. 基础配置结构 ```yaml # data.yaml 基础模板 path: /absolute/path/to/dataset # 数据集根目录绝对路径 train: images/train # 训练集图像路径(相对path) val: images/val # 验证集图像路径 test: images/test # 测试集图像路径(可选) # 类别定义(关键部分) names: 0: apple 1: orange 2: banana 3: pear # 新增物品 4: pineapple # 继续添加新物品 ``` #### 2. 添加新物品的完整流程 1. **创建标准目录结构**: ``` dataset/ ├── images/ │ ├── train/ # 存放训练图像 │ ├── val/ # 存放验证图像 │ └── test/ # 存放测试图像(可选) └── labels/ ├── train/ # 存放训练标注文件 └── val/ # 存放验证标注文件 ``` 2. **修改data.yaml文件**: ```yaml # 新增物品示例 names: 0: smartphone 1: laptop 2: headphone 3: smartwatch # 新增物品1 4: tablet # 新增物品2 ``` 3. **标注文件要求**: - 每个图像对应一个`.txt`标注文件 - 格式:`<class_id> <x_center> <y_center> <width> <height>` - 示例(新增智能手表): ``` 3 0.5 0.5 0.2 0.3 # class_id=3对应smartwatch ``` #### 3. 多模态扩展(参考引用[1]) ```yaml # 多模态数据配置示例 multimodal: True text_data: train: texts/train # 文本训练集路径 val: texts/val # 文本验证集路径 text_encoder: bert-base-uncased # 文本编码器类型 ``` #### 4. 完整训练代码(参考引用[2]) ```python from ultralytics import YOLO # 加载预训练模型 model = YOLO('yolov8n.pt') # 训练配置 model.train( data='path/to/data.yaml', # 使用修改后的配置文件 epochs=100, imgsz=640, batch=16, optimizer='AdamW', lr0=0.01 ) ``` #### 5. 验证配置正确性 使用以下代码检查数据集加载: ```python from ultralytics.data.utils import check_dataset # 验证data.yaml配置 check_dataset('path/to/data.yaml') ``` 正确输出应显示: ``` Dataset ✅ path/to/data.yaml train: 1200 images val: 300 images names: ['smartphone', 'laptop', 'headphone', 'smartwatch', 'tablet'] ``` #### 关键注意事项 1. **类别ID必须连续**:从0开始无间隔编号 2. **标注文件同步**:新增类别的标注文件中必须使用对应ID 3. **路径规范**: - 使用绝对路径避免错误 - Windows路径:`path: C:/datasets/custom` - Linux路径:`path: /home/user/datasets/custom` 4. **类别命名规范**: - 使用小写字母 - 避免特殊字符 - 保持名称唯一性 > 对于YOLOv5用户(参考引用[3]),配置格式略有不同: > ```yaml > # YOLOv5专用格式 > train: ../images/train > val: ../images/val > nc: 5 # 类别总数必须更新! > names: ['smartphone', 'laptop', 'headphone', 'smartwatch', 'tablet'] > ``` ### 相关问题 1. 如何为YOLO新增类别准备标注数据? 2.YOLO训练中如何处理类别不平衡问题? 3. YOLO的data.yaml文件与COCO格式数据集如何转换? 4. 如何验证YOLO数据集配置的正确性? 5. YOLOv5和YOLOv8的data.yaml文件格式有什么区别?[^1][^2][^3]
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值