参数估计笔记

\hat{\theta}参数估计分类两类:1、点估计;2、区间估计;

1、点估计

定义:利用样本值估计参数值或者函数分布形式。

1.1 无偏估计(无偏性)

如果E(\hat{\theta}) = \theta 则称之为 \hat{\theta}\theta的无偏估计量;

如果E(\hat{\theta}) \neq \theta,则E(\hat{\theta}) - \theta称为估计量 \hat{\theta}的偏差;

如果\lim_{n \rightarrow \infty} E\hat{\theta} = \theta,则称之为 \hat{\theta}\theta的渐进无偏估计量;

1.2 均方误差(有效性)

用途:用于评价多个无偏估计量的优劣。

1.3 相合估计(相合性)

定义:在无偏性,有效性的基础上,当样本量n无限增大时,估计量能在某种意义下收敛于被估计的参数值,

对于任意 \xi>0\lim_{n \rightarrow \infty} P\{ |\hat{\theta}_{n}-\theta|<\xi \} = 1,则称\hat{\theta}_n\theta的相合估计量或一致估计量。

 

 

 

 

 

参考:数理统计(第四版)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值