这道题直接按照一般的思路去算是要超时的,必须经过一定程度的优化。
对于a[i],我们需要记录的是他之前和之后最大的连续的值比a[i]大的长度,如果每次都一个个去比对,数据大小是100000,时间复杂度是O(n^2),超时那是必然的。但是其实对于a[i]来说,如果去求后面连续的值,完全没必要一个个去比对,直接看a[i+1]的值就行了。
比如说2、3、4、5这个序列,如果我们要看3往后能延伸多长,并不需要去逐个和4和5比较,在计算4的时候,我们已经计算过5是比4大的,因为3比4小,4所能往后延伸的长度,3也一定能达到(4能延伸的长度内的数据都大于等于4,当然也都比3大),我们可以直接比较在4达到的最终长度的末端之后的值。
这道题计算的时候进制转换也需要特别注意,如果temp没有强制转换成__int64位,提交会wa。
这道题优化的思路非常巧妙,很值得学习。
#include<stdio.h>
#define N 100005
int a[N],s[N],e[N];
int main()
{
int n;
while(scanf("%d",&n),n)
{
int i;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
s[i]=e[i]=i;
}
for(i=0;i<n;i++)
{
while(s[i]>=1&&a[s[i]-1]>=a[i])
s[i]=s[s[i]-1];
}
for(i=n-1;i>=0;i--)
{
while(e[i]<n-1&&a[e[i]+1]>=a[i])
e[i]=e[e[i]+1];
}
__int64 ans;
ans=0;
for(i=0;i<n;i++)
{
__int64 temp;
temp=(__int64)(e[i]-s[i]+1)*a[i];//这里需要进行强制转换。
if(temp>ans)
ans=temp;
}
printf("%I64d\n",ans);
}
return 0;
}