深度学习算法-KNN聚类的原理和实现

K近邻算法是一种基于训练数据集的分类方法,通过计算新实例与训练集中各实例的距离,选取最近的K个邻居进行投票决定分类。K值选择对分类结果至关重要,当K=3时,绿色点被分类为红色;当K=5时,被分类为蓝色。本文探讨了KNN算法的要素及其实现。
摘要由CSDN通过智能技术生成

K近邻算法:给定一个训练数据集,对新的的输入实例,在训练数据集中找到与该实例最邻近的的K个实例,这K个实例的多数属于某个类,就把该实例分为这个类。

K值选择、距离度量、以及分类决策(一般多数表决)为K近邻算法的三个基本要素。

K值选择:

这里写图片描述

从上图中我们可以看到,图中的有两个类型的样本数据,一类是蓝色的正方形,另一类是红色的三角形。而那个绿色的圆形是我们待分类的数据。

如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。
如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。

可见K值的选择对分类的结果还是有很大的影响。

数据集

 

 测试代码


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值