RW-Tree: A Learned Workload-aware Framework for R-tree Construction(ICDE2021)

R-tree是一种流行的索引,它支持对多维数据的高效查询。R-tree的性能主要取决于插入新数据实例时如何构建树结构,这一点已经研究多年。现有的作品可以分为两类。一种是批量加载方法,即批量插入数据实例,但它们不支持实时插入。因此,我们将重点放在另一个单独插入每个数据实例的方法上,因此可以立即查询新数据。然而,现有的方法没有考虑工作量信息,导致潜在的优化机会有限。因此,研究工作负载感知的r -树构造对实现高效的多维数据访问具有重要意义。这里有几个挑战。首先,如何表示查询工作负载是一个挑战。其次,在给定工作负载的情况下,很难准确地衡量数据插入选择的好处。第三,在工作负载中应该同时考虑范围查询和kNN查询

为了应对这些挑战,提出了一种基于学习的r -树构建框架,以解决负载敏感的r -树构建问题。首先,通过提取查询工作负载特征,通过空间划分学习到工作负载的分布;其次,考虑到插入的分布,设计了一个代价模型来描述不同插入选择的收益(即查询执行时间),并从中选择最佳的插入。3)将kNN查询转换为范围搜索查询,以支持同时包含两种查询的负载;实验结果表明,在OpenStreetMap真实数据集上,与基线相比,查询效率提高了1.17倍 

问题:首先,如何捕获查询工作负载的特性并表示它以进行有效和高效的优化是第一个主要挑战(C1)。其次,对于给定的工作负载,如何衡量插入选择对工作负载的好处是一个挑战(C2)。传统的测量方法(例如,区域扩大)并不合适,因为它们不能很好地表示查询的执行时间。第三,空间查询并不局限于范围搜索查询,kNN查询也是一个重要的查询,因此如何在工作负载中同时考虑这两个查询是另一个挑战(C3)。

 

 FRAMEWORK

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值