PKDD (2021)

RLTS: Robust Learning Time-Series Shapelets (典型的机器学方法学习shapelets)

Shapelets是时间序列片段,能够有效地对时间序列实例进行分类。近年来,基于shapelets和分类器的联合学习方法得到了广泛的研究,因为这种方法不仅具有良好的分类性能,而且可以得到可解释的结果对于鲁棒学习,引入了自步学习(SPL)和自适应鲁棒损失。SPL方法可以通过考虑分类损失和可理解的shapelet发现来分配潜在实例权重。此外,引入到特征向量中的自适应鲁棒性与shapelets、分类器和潜在实例权重联合学习。在UCR数据集上验证了AUC的优越性和该方法的有效性。

 1.我们提出了RLTS,它不仅联合学习shapelets和分类器,还学习了SPL中的鲁棒性参数、潜在实例权重(实例可靠性)以及shapelets潜在所属的类

2.为发现可理解的shapelets,本文提出一种SPL方法,不仅考虑分类损失,还考虑shapelets与适当类的可靠时间序列实例的匹配。

3. 为基于shapelet的特征向量引入自适应鲁棒损失。即使如此,通过使用子微分,算法复杂度在时间序列长度上是线性的,如Ref.[17],与大多数现有shapelet方法中的二次或更高的复杂度

Learning to Simulate on Sparse Trajectory Data

现实世界的交通模拟可以帮助验证交通策略。一个好的模拟器意味着模拟的交通类似于现实世界的交通,通常需要密集的交通轨迹(即具有高采样率)来覆盖现实世界的动态情况。然而,在大多数情况下,真实世界的轨迹是稀疏的,这使得模拟具有挑战性本文提出一种新的框架ImIn-GAIL,以解决从稀疏的真实世界数据中学习模拟驾驶行为的问题该架构将数据插值与模仿学习的行为学习过程相结合。据我们所知,我们是第一个解决行为学习问题的数据稀疏问题的人。在合成和真实的驾驶车辆轨迹数据集上研究了所提出的框架,表明所提出方法优于各种基线和最先进的方法。

 

 Interpolation-Discriminator   

ImIn-GAIL和vanilla GAIL的关键区别在于鉴别器。在学习区分专家轨迹和生成轨迹的同时,ImIn-GAIL中的鉴别器还学习将稀疏轨迹插值为稠密轨迹。具体地,如图3所示,所提出的插值-判别器以端到端的方式处理两个子任务:稀疏数据的插值和稠密数据的判别。

 Real-Time Fine-Grained Freeway Traffic State Estimation Under Sparse Observation

获取足够的交通状态(如交通流量、密度和速度)数据对于有效的交通运行和控制至关重要。特别是对于新兴的高级流量应用,细粒度的流量状态估计是非常重要的。随着先进的感知和通信技术的发展,网联汽车为感知交通状态和改变现有的估计方法提供了前所未有的机会。然而,由于网联汽车渗透率低,传统的交通状态估计方法在细粒度要求下效果不佳。针对这一问题,提出一种稀疏观测下的高速公路细粒度交通状态概率估计方法提出残差注意力条件神经过程(RA-CNP),用神经网络近似高斯过程回归(GPR),对时空变化的交通状态进行建模。该方法能够全面地从稀疏数据中提取恒定的时空依赖关系和动态的交通状态依赖关系,具有更好的估计精度。此外,与传统GPR相比,所提方法的计算量更小,适用于实时交通估计应用。使用真实交通数据进行的大量实验表明,在稀疏观测下,所提方法比其他传统的交通估计方法具有更低的估计误差和更可靠的结果。 

 

 Revisiting Convolutional Neural Networks for Citywide Crowd Flow Analytics

城市范围内的人群流动分析对于智慧城市的努力具有重要意义。它的目的是基于历史观测来模拟城市中每个区域的人群流动(如流入和流出)。目前,卷积神经网络(Convolutional Neural Networks, CNNs)凭借其捕获空间相关性的能力被广泛应用于基于栅格的人群流分析中。在重新审视了基于cnn的不同分析任务的方法后,我们暴露了现有使用中的两个常见的关键缺陷:1)学习全局空间相关性的低效,2)忽略潜在区域函数。为了应对这些挑战,在本文中,我们提出了一个名为DeepLGR的新框架,该框架可以很容易地推广用于解决城市范围内的各种人群流动分析问题。该框架由三个部分组成:1)局部特征提取模块学习每个区域的表示;2)全局上下文模块,提取全局上下文先验并对其进行上采样,生成全局特征;3)基于张量分解的区域特定预测器,为每个区域提供定制的预测,与以前的方法相比,这是非常有效的参数。在两个典型人群流动分析任务上的广泛实验证明了我们的框架的有效性、稳定性和一般性。

 图3给出了DeepLGR的框架,该框架可以很容易地推广到全市范围内的各种人群流量。与以往基于ST特征学习器和区域预测器的方法相比,该框架包含三个主要部分:局部特征提取、全局上下文模块和区域特定预测器在第一个分量中,利用SENet来学习来自输入张量x的小(即局部)感受野内每个区域的表示。为了捕获全局空间依赖关系,进一步设计了全局上下文模块,该模块考虑了所有感兴趣区域。首先使用池化方法从学习到的区域表示中提取全局上下文先验,然后在原始尺度上对先验进行上采样以生成全局特征。一旦我们从局部视图和全局视图获得特征,我们将它们连接到一个张量中,然后将其提供给特定区域的预测器,分别对每个区域进行自定义预测。

 


 

 Model Monitoring and Dynamic Model Selection in Travel Time-Series Forecasting

准确的旅游产品价格预测是一个非常受欢迎的功能,它可以让客户做出明智的购买决定,让公司制定和提供有吸引力的旅游套餐。由于机器学习(ML),现在开发用于价格时间序列预测的高度准确的统计模型相对便宜。然而,一旦模型被部署到生产中,随着时间的推移,是它们的监控、维护和改进带来了大部分的成本和困难。为了保证旅游产品价格预测模型的稳定运行,提出了一种基于数据驱动的时间序列预测模型框架来持续监控和维护已部署的时间序列预测模型的性能。在监督学习方法下,预测时间序列预测模型随时间的误差并使用这种预测的性能指标来实现模型监控和维护。在两年多收集的航班和酒店价格的18K时间序列数据集和两个公共基准上验证了所提出的方法。 

Z-Embedding: A Spectral Representation of Event Intervals for Efficient Clustering and Classification

事件间隔序列在许多应用领域中发生,其固有的复杂性阻碍了聚类和分类等任务的可扩展解决方案。该文提出了一种基于二分图的事件区间序列谱嵌入表示方法将事件区间序列表示为二分图主要包括以下3个步骤:(1)创建哈希表,将事件区间序列集合快速转换为二分图表示;(2)创建并正则化与二分图对应的双邻接矩阵;通过修剪捕捉事件间隔形成关系本质的参数,可以在分类性能方面实现实质性的改进。在五个真实数据集上进行了广泛的实验评估,与其他最先进的方法相比,所提出方法可以获得高达两个数量级的运行时加速,以及类似或更好的聚类和分类性能。 

 

 Z-Embedding是一个有效的三步框架,用于将e序列数据库转换为谱嵌入向量空间表示,其中关于e序列中时间关系的重要结构信息通过修剪技术得到保留,从而促进可扩展的聚类和分类。该框架的前两步将原始e-sequence数据库转换为二分图,第三步将二分图转换为谱嵌入空间。最终的空间表示可以被现成的聚类或分类算法使用。这些步骤也在图3和算法1中概述

G-HashTable 这是一种数据结构,可以有效地存储扫描e-sequence数据库后创建二分图所需的信息。我们可以将基于时间关系的各种剪枝过程应用于表,以获得更好的图表示。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值