FedRME: Federated Road Markings Extraction from Mobile LiDAR Point Clouds

从移动激光雷达系统获取的三维点云中提取道路标记(RME),在道路安全和自动驾驶等领域有着广泛的应用。然而,由于个人数据保护意识和国家信息安全法规的不断提高,大多数自动驾驶公司不愿意与社区共享其私有点云数据。因此,这种集中培训的限制可能会不可避免地抑制RME程序的有效性。联邦学习(FL)是一种分布式机器学习架构,可以解决上述的隐私-准确性困境,从多个客户端协作学习全局RME模型,而不共享原始数据为此,提出一种新的联邦道路标识提取系统FedRM E,从移动激光雷达三维点云中协同学习包含多个隐私保护局部模型的全局RME模型。FedRME采用经典的FedAvg模型构建一个可泛化的全局特征嵌入模型,不需要访问局部数据。此外,针对局部模型随点云体积和类别不同而变化的数据异构问题,设计了一种动态加权机制来优化服务器聚合前的协作训练效果。在三个具有联邦学习设置的真实美孚激光雷达点云数据集上的实验结果表明,FedRME不仅具有优越的性能,而且可以将计算量减少25%

Challenge 1: How to cooperatively learn a powerful global model from multiple clients?  

挑战2:如何应对局部RME模型的数据异构问题? 

为了应对上述两个挑战,本文提出了一种范式FedRME是一个联邦道路标识提取系统,从3D移动LiDAR点云中协同学习一个包含多个隐私感知局部模型的全局RME模型。FedRME采用经典的FedAvg模型构建一个可泛化的全局特征嵌入模型,不需要访问局部数据。此外,针对局部模型因点云数量和类别不同而产生的数据异构问题,设计了一种动态加权机制,在服务器聚合之前优化协同训练效果。在3个具有联邦学习设置的真实移动激光雷达点云数据集上的实验结果表明,FedRME在所有评价指标上都取得了优越的性能。 

 我们利用U-Net[18]进行道路标记提取。与直接使用交叉熵的传统U-Net模型不同,我们引入了一种新的焦损(Focal Loss, FLO)模块作为一种新的损失函数,使模型的训练更多地关注于需要大量训练时间的硬样本(如斑马线)。通过使用FLO模块,训练模型将提高这些硬样本的优先级,以优化整体模型的预测精度。U-Net、WC和FLO的详细设计将在下一小节中进行描述。当三维点云处理完成后,将一组道路标线图像引入特定客户进行局部训练。一方面,利用加权计算(WC)模块,通过评估标线图像的体积和类别,计算出客户端的加权因子;通过WC模块,解决了客户端潜在的数据异构问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值