Networked Time Series Imputation via Position-aware Graph Enhanced Variational Autoencoders

Networked Time Series Imputation via Position-aware Graph Enhanced Variational Autoencoders(KDD 2023)

多元时间序列(MTS)插值是近年来研究的一个热点问题。现有的方法可以分为两大类,包括:(1)深度循环或生成模型,主要关注时间序列特征;(2)基于图神经网络(gnn)的模型,利用mts固有图结构的拓扑信息作为关系归纳偏差进行imputation。然而,这些方法要么忽略拓扑信息,要么假设图的结构是固定的,并且是准确已知的。因此,在网络时间序列(NTS)等更具挑战性的MTS数据中,它们无法充分利用图动力学进行精确的输入,因为底层图不断变化,可能会丢失边缘。在本文中,我们提出了一种新的方法来克服这些限制。首先,我们定义了包含节点时间序列特征和图结构缺失值的NTS上的imputation问题。然后,我们设计了一个名为PoGeVon的新模型,该模型利用变分自编码器(VAE)来预测节点时间序列特征和图结构的缺失值。与基于消息传递的图神经网络(gnn)相比,我们提出了一种基于随机行走(RWR)的编码器节点位置嵌入方法,具有更高的表达能力。我们进一步从多任务学习的角度设计了一个具有三阶段预测的解码器,以在时间序列和图结构中相互输入缺失值。实验结果证明了该模型在基线上的有效性。

 

模型:

将NTS的输入作为一个多任务学习,这个多任务学习问题包括节点时间序列的输入任务和图结构的链接预测任务。

 1)编码器旨在对NTS数据的结构信息和动态信息进行编码。为了获取这种远距离全局信息,我们建议使用带有重新启动随机行走(RWR)的位置嵌入。

2)解码器是GRU,有三个阶段的预测

第一阶段特征预测。在第一阶段,我们使用线性层来生成时间序列中缺失值的初始预测 

 

第二阶段链路预测。第二阶段预测在图中输入缺失的加权边 

 

 实验

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值