Dual Space Graph Contrastive Learning

无监督图表示学习已经成为解决现实问题的有力工具,并在图学习领域取得了巨大成功。图对比学习是一种无监督的图表示学习方法,近年来引起了研究人员的关注,并在各种任务上取得了最先进的性能。图对比学习成功的关键在于构建合适的对比对以获取图的潜在结构语义。然而,这一关键部分目前尚未得到充分探索,大多数生成对比对的方法都专注于增强或扰动图结构,以获得输入图的不同视图。但这种策略可能会通过向图中添加噪声而降低性能,从而缩小图对比学习的应用范围。 

文中提出了一种新的图对比学习方法,即对偶空间图对比(DSGC)学习,用于在双曲空间和欧氏空间等不同空间中生成的视图之间进行图对比学习。由于两个空间在嵌入空间中表示图数据都有自己的优势,我们希望利用图对比学习来连接空间并利用双方的优势。对比实验结果表明,DSGC在所有数据集上都取得了相当或更好的性能。进行了广泛的实验,分析了不同图编码器对DSGC的影响,为如何更好地利用不同空间之间对比学习的优势提供了见解。 

关键点:对比学习方法,解决传统图对比学习中图结构扰动问题,采用对偶空间对比学习方法,在欧式和双曲线空间实现图对比学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值