Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment

Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment

    序列事件预测的目标是根据历史事件序列估计下一个事件,在序列推荐、用户行为分析和临床治疗等方面都有应用。在实践中,练下一个事件预测模型用一次收集的序列数据进行训,需要在遥远的未来泛化到新到达的序列,这就要求模型处理从训练到测试的时间分布转移本文首先从数据生成的角度揭示了一个消极的结果,即由于潜在的上下文混淆因素,即历史事件和下一个事件的共同原因,现有的最大似然估计方法将失败于分布漂移。然后设计了一个新的基于后门调整的学习目标,并进一步利用变分推理使其可用于序列学习问题。本文提出一个具有层次分支结构的框架,用于学习特定于上下文的表示。在不同任务(如顺序推荐)上的全面实验,以各种现成的模型为骨干,证明了所提出方法的有效性、适用性和可扩展性。 

    处理顺序事件数据中的分布漂移带来了一些重大挑战。首先,时间偏移需要模型的分布外(OoD)泛化能力[30],。即从训练环境外推到遥远的未来新的未见环境专注于分布内数据的模型学习和评估的现有技术可能会在OoD测试实例上产生次优结果。第二,如前所述,影响事件产生的外部因素是存在的。这些外部因素,我们称之为上下文,在实践中是无法观察到的。为了消除它们的影响,可能还需要描述上下文如何影响事件生成的潜在分布。不幸的是,由于数据收集受限和隐私问题,这些信息通常是不可访问的,这需要模型从纯观察序列中学习

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
针对过分分布的普遍化:一项调查 "towards out of distribution generalization: a survey"是一项对过分分布普遍化现象的研究。该研究关注如何处理机器学习中的模型在训练过程中未曾遇到的情况下的泛化能力。 当前,机器学习中的模型往往在面对与训练数据不同的情况时出现问题。这些情况被称为"分布外"或"过分分布"。过分分布问题在现实世界的应用中非常普遍,例如在医学影像诊断中,模型在对未见过的病例进行预测时可能出现错误。 为了改善过分分布问题,该调查着重研究了几种处理方法。首先,一种方法是使用生成对抗网络(GAN)。GAN可以通过学习未见过的数据分布来生成合成样本,从而提高模型的泛化性能。其次,该调查还介绍了自监督学习和深度对比学习等技术。这些方法通过引入自动生成标签或学习新的特征表示来增强模型的泛化能力。 此外,该调查提到了一些用于评估模型在过分分布上泛化能力的评估指标。例如,置信度和不确定性度量可以帮助评估模型对于不同类别或未知样本的预测是否可信。同时,模型的置换不变性和鲁棒性也是评估模型泛化能力的重要因素。 总结来说,这项调查对于解决过分分布普遍化问题提供了一些有益的方法和指导。通过使用生成对抗网络、自监督学习和深度对比学习技术,以及评估模型的不确定性和鲁棒性,我们可以提高模型在未曾遇到的情况下的泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值