GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection (WSDM2023)
大多数现有的深度学习模型都是基于封闭世界假设进行训练的,其中测试数据被假设从与训练数据相同的分布中提取,称为分布(ID)。然而,当模型部署在开放世界场景中时,测试样本可能超出分布(out- distribution, OOD),因此应该谨慎处理。为了检测来自未知分布的OOD样本,OOD检测近年来受到越来越多的关注。然而,目前的努力主要集中在网格结构数据上,其在图结构数据中的应用仍未得到充分的探索。考虑到图上的数据标注通常是费时费力的,在本工作中,我们研究了无监督图OOD检测问题,旨在仅基于未标记的ID数据检测OOD图。为了实现这一目标,我们开发了一个新的图对比学习框架GOOD-D,用于在不使用任何真值标签的情况下检测OOD图。通过对我们的无扰动图数据增强方法生成的增强图进行分层对比学习,GOOD-D能够捕获潜在的ID模式,并基于不同粒度(即节点级,图级和组级)的语义不一致性准确检测OOD图。作为无监督图级OOD检测的开创性工作,我们建立了一个全面的基准来比较我们提出的方法与不同的最先进的方法。实验结果表明,在不同的数据集上,我们的方法优于其他方法。
总结:在本文中,我们首次尝试从图结构数据中检测出分布外(OOD)样本。为了解决这个问题,我们提出了一种新的OOD检测方法,称为GOOD-D,它通过精心设计的分层图对比学习框架从训练分布(ID)中学习属性和结构模式。在GOOD-D中,通过最大化特征图视图和结构图视图之间的相互一致性,共同进行节点、图和组层次的对比,并设计了一种自适应机制来平衡学习目标和学习到的OOD分数在三个层次上的权衡。大量的实验表明,在一系列现实世界的基准测试中,GOOD-D优于基线方法。