INCREASE: Inductive Graph Representation Learning for Spatio-Temporal Kriging

INCREASE: Inductive Graph Representation Learning for Spatio-Temporal Kriging (www2023)

本文以时空图数据的克里金插值为应用场景,提出了引入多重异质关系的归纳式时空图数据表示学习方法(简称INCREASE),旨在通过对时空克里金问题中的异构空间关系和不同的时间模式进行联合建模以获得未知节点的时空特征表示,并设计了一种多关系注意机制,以用于动态融合复杂时空特征信息而最终计算得到克里金序列。 

一、研究背景和挑战

在现实场景中,由于高昂的运营成本,用于收集各类时空数据的设备数量往往存在一定限制,且不同区域间设备的分布通常存在不均衡性。这使得仅使用观测到的数据很难进行细粒度和高空间分辨率的建模。时空克里金插值旨在解决此类数据稀疏性及数据可用性不均衡的问题。归纳式时空克里金插值算法在不需要重新训练模型的情况下,能够直接对未知节点生成时序序列。然而,当前已有的归纳式时空克里金插值算法效果并不理想,仍存在以下三点重要的研究挑战

挑战1:如何为未知节点选取最相关的已知节点集合,并准确建模它们的相似性和差异性?在时空图数据中,未知节点和已知节点之间存在着复杂的多重异质关系。如图 1所示为一个交通场景下的未观测地区与已部署传感器之间的多重异质关系的示例。在估计地区 X 的交通流量时,不同的已知节点与地区X间可能存在不同关系:传感器A与地区X的距离较近(地理邻近性)、传感器B和地区X由于都邻近购物中心而具有相似的功能性(功能相似性)、地区C的车流可能由于路径选择等原因流向地区X(转移概率)。并且,根据某种特定关系建立联系的两个地区之间在数据模式上的差异性也不容忽视。比如,地区C和地区X的交通模式在上下班时期高度相似,但在其他时间则可能存在明显差异性。

挑战2:如何在多重异质关系中利用已知节点数据自适应地建模未知节点在时间维度上的信息流动模式?由于缺乏历史数据,直接对未知节点的时间相关性进行建模并非易事。此外,不同的未知节点可能具有不同的时间模式,这使得这个问题更具挑战性。

挑战3:如何动态地将异构空间关系与不同的时间模式结合起来?在时空图数据中,多重异质关系的重要性是动态变化的。如图 1所示,估计地区X的数据时,在上下班高峰时期,转移概率关系(地区C)可能占主导地位,但是在其他时间,地理邻近性(地区A)或者功能相似性关系(地区B)可能更为重

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值