Kuaishou-【学习Diffusers 四】 读取模型参数 bin格式、safetensors格

本文详细介绍了如何在深度学习项目中,使用safetensors和bin格式读取预训练的unet模型参数,并将其适配到pipeline中,以及在GPU上的部署过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该操作多用于推理

safetensors格式的参数读取方法

1 拿到pipeline中的unet的办法
unet = pipeline.pipe.unet

2 safetensors格式文件的参数读取方法
state_dict = safetensors.torch.load_file(args.model_id, device="cpu")
unet.load_state_dict(state_dict)  # 读入模型

3 args.model_id = "xxxx/unet/diffusion_pytorch_model.safetensors"
unet模型路径

4 将修改的unet放回pipeline

pipeline.pipe.unet = unet.half().to(args.device)

对于bin格式

1 读取参数
state_dict=torch.load('../train-output/'+ args.model_name_or_path.split('/')[-1] +'/unet/diffusion_pytorch_model.bin')
2 送入uent
unet.load_state_dict(state_dict)
3 送回pipe
pipe.unet = unet
4 送入GPU
pipe.to("cuda")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉-Archer

图像分割没有团队的同学可加群

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值