指静脉当前遇到的问题/展望,发展方向

文章探讨了指静脉识别领域面临的问题,如图像质量、数据集限制和网络设计。针对这些问题,提出了改进的残差网络、残差注意力机制和Xception网络结合CBAM的解决方案,旨在提升识别准确性和模型鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、《基于改进残差网络的指静脉识别算法》_易芮 2020.5.20

①采集到的指静脉图像质量不高"边缘曝光"及手指的自由度导致图像存在的偏移问题

(传统的指静脉识别技术是基于图像的纹理、特征点等细节进行特征提取,若图像质量较差的话,提取到的指静脉特征会不稳定,会降低指静脉识别的准确性)->改进残差网络的指静脉识别算法

        采集到的图像除了包含静脉区域之外,还包含了指静脉采集器中的背景,这些背景和手指轮廓的边缘区域存在很多噪声以及曝光现象,因此需要排除这种外界环境带来的干扰因素;

        另一方面,虽然指静脉采集器通常都设有固定手指的装置,用于限制手指的移动范围,但是考虑到用户体验的问题,这种固定措施通常是比较松散的,手指在采集器中仍然有一定范围的活动空间,可能会出现上下偏移或者左右偏移等姿态变化,同时不同手指的粗细程度也有一定的差异,因此不能直接将采集到的图片用于特征提取。

②由于公开的指静脉数据集较少,如何利用有限的数据集训练得到鲁棒性较好的模型性能是主要研究问题之一.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Ocean__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值