数据处理之连续数据离散化

一些数据挖掘算法,比如Apriori算法等,要求数据是分类属性形式,需要进行连续数据离散化。

连续数据离散化就是在数据的取值范围内,设定若干个离散的划分点,将取值范围划分为一些离散化的区间,最后用不同的符号或整数值代表落在每个子区间中的数据值。

离散化涉及两个子任务:

1、确定分类数

2、将连续属性值映射到这些分类值

 

举例1,先导入数据,如下:

常用的离散化方法:

1、等宽法

将数据的值域分成具有相同宽度的区间。区间的个数根据数据特点或用户指定。

缺点是对离群点比较敏感,不均匀地分布数据。

R语言:

v1 = ceiling(data[,1]*10) #宽度设为1,进行等宽离散化

Python:

import pandas as pd
data = pd.read_excel('discretization_data.xls')
data = data[u'肝气郁结证型系数'].copy()
k = 4

d1 = pd.cut(data,k,labels=range(k))

2、等频法

将相同数量的记录放进每个区间。

缺点是可能将相同的数据分到不同的区间。

R语言:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值