MATLAB进阶:矩阵代数

今天我们学习矩阵在MATLAB中的运算。

运算符

与数组运算相同:

A. ’转罝

A’(共轭)转罝

共轭转置(A’或A†):

  • 对于一个复数矩阵A,其共轭转置记作A’或A†。
  • 共轭转置不仅将矩阵A的行和列互换(即进行转置),而且还将矩阵中每个元素的复共轭取出来。
  • 如果矩阵A中的元素是实数,那么共轭转置就等同于普通的转置,因为实数的共轭就是其本身。

A+B 与 A-B 加与减

k+A与k-A 数与矩阵加减

K*A或A*K数乘矩阵

与数组运算不同:

A*B 矩阵乘法

A^k 矩阵乘方

左除A\B 为AX=B的解

右除B/A 为XA=B的解

矩阵运算与数组运算的区别

  • 数组运算按元素定义,矩阵运算按线性代数定义
  • 矩阵的加、减、数乘等运算与数组运算是一致的
  • 数与矩阵加减、矩阵除法在数学上是没有意义的,但在MATLAB中有定义。

 注意:矩阵的乘法、乘方、除法与数组乘法、乘方、除法不同!

A*B 矩阵乘法  A.*B 数组乘法

A^k 矩阵乘方  A.^k 数组乘方

A\B 矩阵左除  A.\B 数组左除

B/A 矩阵右除  B./A 数组右除

特殊矩阵生成

  • zeros:零矩阵
  • Z = zeros(2, 3);
  • ones:所有元素都是1的矩阵 
  • oneMatrix = ones(2, 3);
  • eye:创建单位矩阵(对角线元素为1,其余为0)
  • I = eye(2, 3);
  • rand:创建一个元素在[0,1]区间内均匀分布的随机矩阵
  • R = rand(2, 3);
  • randn:创建一个元素为标准正态分布(均值为0,方差为1)的随机矩阵
  • RN = randn(2, 3);
  • diag:创建对角矩阵或提取矩阵的对角线元素
  • D = diag([1 2 3]); % 创建对角矩阵
  • magic:创建一个魔方矩阵(每行、每列和对角线上的元素和相等)
  • M = magic(3); % 注意:这里需要方阵的尺寸

特征值、特征向量

定义: 设 AA 是一个 n×nn×n 的方阵,如果存在一个非零向量 xx 和一个标量 λλ,使得以下等式成立:

那么,标量 λ 被称为矩阵 A 的一个特征值,非零向量 x 被称为对应于特征值 λ 的一个特征向量

寻找矩阵的特征值与特征向量用eig函数:

V=eig(A)

返回方阵A的特征值

[V,D]=eig(A)

返回方阵A的特征值和特征向量。其中D为的特征值构成的对角阵,每个特征值对应的V的列为属于该特征值的一个特征向量。

矩阵分析

rank(A): 秩

det(A): 行列式

inv(A): 逆矩阵

null(A): Ax=0的基础解系

orth(A): A列向量正交规范化

norm(x): 向量x的范数(长度,模)

norm(A): 矩阵A的范数

今天就到这里,我们明天继续学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值