搞懂语音去噪

1 概述

语音去噪(noise reduction)又被称为语音增强(speech enhancement),主要是针对于有人声的音频进行处理,目的是去除那些背景噪声,增强音频中人声的可懂性(intelligibility)。其应用范围很广,可以用于人与人之间的语音通讯,也可以用于很多语音任务的预处理,比如Automatic speech recognition。

这里的噪声通常被分为两大类,stationary和non-stationary。

stationary noise是指不随着时间发生变化变化的噪声,比如菜场的嘈杂声,电台的杂讯声等等

non-stationary noise是指随时间发生变化的噪声,比如说话时背后突然经过一辆汽车,又比如突然响起的警报声等等

举个实际应用中去噪的例子,我们的手机一般会为我们的通话自动做降噪处理,它会在离说话人嘴巴较近的地方装一个声音接收器,又会在离说话人嘴巴较远的地方装一个声音接收器,并认为后者接收到的声音基本就是noise,然后在这个前提下对人说的话进行去噪。有这样的设备的帮助,去除non-stationary noise会更方便一些,但很多情况下,我们拿到的就只有一段有噪声的语音。

2 传统语音去噪

2.1 谱减法

谱减法应该是最早被用于语音去噪的方法,它的思想非常简单,就是通过估计出噪声,并在频域里将其幅值剪掉,再还原,就结束了。为了表示方便,我们先假设纯净的声音为 x ( n ) x(n) x(n),原始声音为 y ( n ) y(n) y(n),噪声为 e ( x ) e(x) e(x),就有

y ( n ) = x ( n ) + e ( n ) (2-1) y(n) = x(n) + e(n) \tag{2-1} y(n)=x(n)+e(n)(2-1)

这里只有 y ( n ) y(n) y(n)是我们有的,其他 x ( n ) x(n) x(n) e ( n ) e(n) e(n)都还不知道,目的是把 x ( n ) x(n) x(n)给求出来。

noisereduce中的stationary的方法就是用谱减法去做的,效果还是不错的,不过也只能应对于stationary noise。

我们按谱减法步骤来说明一下整个过程。

(1)截取头部一小段语音作为噪声
e ( m ) = y ( n ) [ : m ] e(m) = y(n)[:m] e(m)=y(n)[:m]

其中 e e e表示噪声信号, y y y表示原始信号, m m m n n n表示sample的数量。

我们认为stationary noise是一直存在于背景当中的声音,而人声一般在开头的几十毫秒是没有的,所以就默认取前面一小段作为噪声。不过当无法确定噪声的时候,把整段声音都作为噪声也是可以的,noisereduce就是这么做的。

(2)分别计算原始音频和噪声的STFT, Y ( ω ) Y(\omega) Y(ω) E ( ω ) E(\omega) E(ω)
(3)根据噪声的频谱幅值,对原始音频的频谱幅值进行谱减。

最粗暴的做法是直接对每个频率上的 ∣ E ( ω ) ∣ |E(\omega)| E(ω)沿时间轴取均值得到 ∣ E ( ω ) ∣ m e a n |E(\omega)|_{mean} E(ω)mean,然后再把原始音频每个时间点每个频率上的幅值减去对应的均值,并把相减后幅值小于0的置0,作为对纯净音频的频谱幅值估计 ∣ X ^ ( ω ) ∣ |\hat{X}(\omega)| X^(ω)。有的地方也会用能量谱 ∣ X ^ ( ω ) ∣ 2 |\hat{X}(\omega)|^2 X^(ω)2,这里只是为了说明大意,不管这些细节了。

∣ X ^ ( ω ) ∣ = { ∣ Y ( ω ) ∣ − ∣ E ( ω ) ∣ m e a n , i f   ∣ Y ( ω ) ∣ − ∣ E ( ω ) ∣ m e a n > 0 0 , o t h e r w i s e (2-2) |\hat{X}(\omega)| = \begin{cases} |Y(\omega)| - |E(\omega)|_{mean}, & if \ |Y(\omega)| - |E(\omega)|_{mean} > 0 \\ 0, &otherwise \end{cases} \tag{2-2} X^(ω)={Y(ω)E(ω)mean,0,if Y(ω)E(ω)mean>0otherwise(2-2)

这样做不好的地方就是会有很多坑坑洼洼的噪声频率残留,这个现象也被称为是音乐噪声。实际操作过会发现这种方法减了和没减差不多。因此有人提出了过减法,就是宁可错杀一千不能放过一个的做法。

∣ X ^ ( ω ) ∣ = { ∣ Y ( ω ) ∣ − α ∣ E ( ω ) ∣ m e a n , i f   ∣ Y ( ω ) ∣ > ( α + β ) ∣ E ( ω ) ∣ m e a n β ∣ E ( ω ) ∣ , o t h e r w i s e (2-3) |\hat{X}(\omega)| = \begin{cases} |Y(\omega)| - \alpha |E(\omega)|_{mean}, & if \ |Y(\omega)| > (\alpha + \beta)|E(\omega)|_{mean}\\ \beta |E(\omega)|, &otherwise \end{cases} \tag{2-3} X^(ω)={Y(ω)αE(ω)mean,βE(ω),if Y(ω)>(α+β)E(ω)meanotherwise(2-3)

其中, α ∈ [ 0 , + ∞ ] \alpha \in [0, +\infin] α[0,+]是过减因子, β ∈ [ 0 , 1 ] \beta \in [0, 1] β[0,1]是谱下限参数,用来控制残留多少的噪声。这样减出来噪声会明显少了很多,但声音也会随着 α \alpha α的增大而逐渐失真。

noisereduce中的具体实现略有不同,它过减用 ∣ E ( ω ) ∣ |E(\omega)| E(ω)的方差来控制,一般是1.5倍或者1.0倍的方差。代码片段如下所示

self.mean_freq_noise = np.mean(noise_stft_db, axis=1)
self.std_freq_noise = np.std(noise_stft_db, axis=1)
self.noise_thresh = self.mean_freq_noise + self.std_freq_noise * self.n_std_thresh_stationary

小于noise_thresh的幅值会置0,其余的保留。n_std_thresh_stationary为0时,就是没有过减的式 ( 2 − 2 ) (2-2) (22)

(4)对 ∣ X ^ ( ω ) ∣ |\hat{X}(\omega)| X^(ω)做平滑处理,使得声音失真没那么严重。

noisereduce中使用的scipy.signal.fftconvolve来实现这一过程。

(5)结合原始音频的相位,还原谱减后的音频。这就是个反向STFT的过程。

建议看一下noisereduce的代码,还是比较容易理解的。

2.2 维纳滤波法

维纳滤波法(wiener filter)也是一个比较经典的传统做法,它的本质是估计出一个线性滤波器,也就是一个向量,这个滤波器会对不同的频段进行不同程度的抑制,其保真效果会比谱减法要好一些。

我们这里不会讲详细的推导过程,只讲其大致思想。因为这么大功夫推导出来,还是有很多不能解决的问题,还不如深度学习train一发。想看详细推导了可以去看知乎的卡尔曼滤波器详解——从零开始(3) Kalman Filter from Zero这篇,于泓-语音增强-维纳滤波这个视频讲的更偏向于应用,都很棒。

还有就是这里讲的是smoothing的问题,即根据未来的信号,过去的信号以及现在的信号来推测出现在的干净信号。除此之外,还有prediction和filtering的问题,prediction是指根据过去的和现在的信号,预测未来的干净信号;filtering的问题是指根据过去和现在的信号,推测现在的干净信号。所以这里讲的方法没法应用于实时语音去噪,只能在拿到整段信号之后,对这段信号进行去噪。

维纳滤波器的设计准则为使得干净信号 x ( n ) x(n) x(n)和估计的干净信号 x ^ ( n ) \hat{x}(n) x^(n)之间的差值越小越好,即计算一个最小均方差

M S E ( x ^ ) = E ( x ^ ( n ) − x ( n ) ) 2 (2-4) MSE(\hat{x}) = E(\hat{x}(n) - x(n))^2 \tag{2-4} MSE(x^)=E(x^(n)x(n))2(2-4)

这里的 x ^ ( n ) \hat{x}(n) x^(n)是估计的干净信号, x ( n ) x(n) x(n)是真实的干净信号。

我们假设设计出来的滤波器为 h ( n ) h(n) h(n),则我们有

x ^ ( n ) = h ( n ) ∗ y ( n ) (2-5) \hat{x}(n) = h(n)*y(n) \tag{2-5} x^(n)=h(n)y(n)(2-5)

这里的 y ( n ) y(n) y(n)是原始信号, ∗ * 表示卷积。时域的卷积就是频域的乘积。就有

X ^ ( ω ) = H ( ω ) Y ( ω ) (2-6) \hat{X}(\omega) = H(\omega)Y(\omega) \tag{2-6} X^(ω)=H(ω)Y(ω)(2-6)

我们用 ( 2 − 4 ) (2-4) (24)来计算这里的 H ( ω ) H(\omega) H(ω),这里省略去一大波的推导过程,最终有

H ( ω k ) = P x x ( ω k ) P x x ( ω k ) + P n n ( ω k ) (2-7) H(\omega_k) = \frac{P_{xx}(\omega_k)}{P_{xx}(\omega_k) + P_{nn}(\omega_k)} \tag{2-7} H(ωk)=Pxx(ωk)+Pnn(ωk)Pxx(ωk)(2-7)

其中, P x x ( ω k ) = E [ ∣ X ( ω k ) ∣ 2 ] P_{xx}(\omega_k) = E[|X(\omega_k)|^2] Pxx(ωk)=E[X(ωk)2] P n n ( ω k ) = E [ ∣ N ( ω k ) ∣ 2 ] P_{nn}(\omega_k) = E[|N(\omega_k)|^2] Pnn(ωk)=E[N(ωk)2],这里为了避免符号混淆,把噪声的频域用 N ( ω k ) N(\omega_k) N(ωk)来表示的。

( 2 − 7 ) (2-7) (27)也可以表示为

H ( ω k ) = ξ k ξ k + 1 (2-8) H(\omega_k) = \frac{\xi_k}{\xi_k + 1} \tag{2-8} H(ωk)=ξk+1ξk(2-8)

其中, ξ k = P x x ( ω k ) P n n ( ω k ) \xi_k=\frac{P_{xx}(\omega_k)}{P_{nn}(\omega_k)} ξk=Pnn(ωk)Pxx(ωk)为先验信噪比,就是干净信号的能量谱和噪声能量谱的比例。

( 2 − 8 ) (2-8) (28)可以看出,当噪声占比比较小时, H ( ω k ) H(\omega_k) H(ωk)就比较大,表示允许干净信号通过;当噪声占比比较大时, H ( ω k ) H(\omega_k) H(ωk)就比较小,表示抑制噪声信号通过。

( 2 − 8 ) (2-8) (28)有一个变种的泛化形式

H ( ω k ) = ( ξ k ξ k + α ) β (2-9) H(\omega_k) = (\frac{\xi_k}{\xi_k + \alpha})^{\beta} \tag{2-9} H(ωk)=(ξk+αξk)β(2-9)

这里的 α \alpha α β \beta β都是可以设置的参数,当 α = 1 \alpha = 1 α=1并且 β = 1 \beta=1 β=1时,式 ( 2 − 9 ) (2-9) (29)就变成了式 ( 2 − 8 ) (2-8) (28)。不同的 α \alpha α β \beta β的值可以控制对噪声的抑制程度,当我们事先知道噪声大概在哪个频段的时候,就可以对不同的频段设置不同的 α \alpha α β \beta β

实际应用时我们并没有干净信号,也没有噪声信号,所以似乎没法算 H ( ω k ) H(\omega_k) H(ωk)。这就需要我们先去估计一个噪声信号和干净的信号了。估计的方法可以用2.1中的谱减法,也就是说当只有含噪声的原始信号时,维纳滤波就是在谱减法的基础上再进行了一次估计。

比如我们有一个长度为 ( 23410 , ) (23410,) (23410,)的信号,经过谱减法之后得到了一个 ( 23296 , ) (23296,) (23296,)的干净信号和噪声信号。由于短时傅里叶的原因,信号长度会变短一些,这个不影响。我们拿谱减估计的干净信号和噪声信号去计算滤波器。干净信号和噪声信号经过STFT之后都变成了 ( 129 , 183 ) (129, 183) (129,183)的信号,其中129表示有129个频段,183时间维度上按窗口分割的分段数量。 H ( ω k ) H(\omega_k) H(ωk)计算出来是一个 ( 129 , 1 ) (129, 1) (129,1)的向量,即对每个频段的抑制程度,然后整条信号过这个滤波器之后,做ISTFT还原。示例代码可见test_wiener_2.py

从这里也不难看出,对整条信号使用的滤波器参数是固定的。这也使得该方法无法搞定non-stationary noise。

3 深度语音去噪

前人想了这么多用公式推导而来的去噪方法,都不能很好地搞定non-stationary noise,还不如深度学习train一发。深度学习的效果是真的好,而且速度都比传统的方法快,只要有数据就行,数据驱动才是王道啊。

这里要讲的是facebook出品的机遇DEMUCS的denoiser。DEMUCS之前是用于音频分轨(source separation)的,去噪的本质其实也就是把人声轨给分离出来,与其说是去噪,不如说是提取人声更为合理一些。当然,这个都是由数据控制的。其目的是用神经网络构建一个函数 f f f使得式 ( 2 − 1 ) (2-1) (21)中的

x ( n ) = f ( y ( n ) ) (3-1) x(n) = f(y(n)) \tag{3-1} x(n)=f(y(n))(3-1)

denoiser的模型架构非常简明易懂,也非常轻量,可以用于实时的语音去噪,其结构示意图如下图3-1所示。
demucs structure

图3-1 DEMUCS网络结构示意图

整个结构就是一个U-net的结构,输入和输出都直接是声音信号,Encoder和Decoder都分别有 L L L层,每一层都是由一个conv1d+relu+conv1d+glu组成的,其示意图如下图3-2所示。

encoder and decoder

图3-2 encoder和decoder结构示意图

其中,glu中的conv1d是一个kernel_size=1的卷积,主要目的是改变channel的数量,同时也可以在channel之间做特征的融合。 e n c o d e r i encoder_i encoderi的输入只有上一个 e n c o d e r i − 1 encoder_{i-1} encoderi1的输出, d e c o d e r i decoder_i decoderi的输入除了上一个 d e c o d e r i + 1 decoder_{i+1} decoderi+1的输入之外,还有 e n c o d e r i encoder_i encoderi的输出。 d e c o d e r i decoder_i decoderi利用 e n c o d e r i encoder_i encoderi这样的操作也被称作skip connection。

e n c o d e r L encoder_L encoderL的最终输出会经过一个LSTM之后再进入 d e c o d e r L decoder_L decoderL。记 e n c o d e r L encoder_L encoderL的输出为 z z z d e c o d e r L decoder_L decoderL的输入特征为 z ^ \hat{z} z^,则有

z ^ = L S T M ( z ) + z (3-2) \hat{z} = LSTM(z) + z \tag{3-2} z^=LSTM(z)+z(3-2)

网络的loss由两部分组成,分别是L1 loss和多尺度的STFT loss组成。前者保证输出信号相近,后者保证组成该输出信号的频率相近。

L1 loss表示了目标信号和模型输出信号之间的差值,表示为

L w a v e f o r m = 1 T ∣ ∣ x − x ^ ∣ ∣ 1 (3-3) L_{waveform} = \frac{1}{T} ||\bold{x} - \bold{\hat{x}}||_1 \tag{3-3} Lwaveform=T1xx^1(3-3)

其中, x \bold{x} x是干净的目标信号, x ^ \bold{\hat{x}} x^是模型输出的信号, T T T为采样点的数量。

不过在实际的代码实现中,这个loss可以是L1 loss,也可以是L2 loss,还可以是smooth L1 loss。

多尺度的STFT loss是指用不同的fft bins,hop sizes和window lengths的到的各个STFT下的loss,这也是为了让模型不过拟合于某一种参数下的STFT变换。

L s t f t = 1 T ∑ i = 1 M L s t f t ( i ) ( x , x ^ ) (3-4) L_{stft} = \frac{1}{T} \sum_{i=1}^M L_{stft}^{(i)}(\bold{x}, \bold{\hat{x}}) \tag{3-4} Lstft=T1i=1MLstft(i)(x,x^)(3-4)

其中,每个 L s t f t ( i ) ( x , x ^ ) L_{stft}^{(i)}(x, \hat{x}) Lstft(i)(x,x^)由spectral convergence (sc) loss和magnitude loss组成。

L s t f t ( i ) ( x , x ^ ) = L s c ( i ) ( x , x ^ ) + L m a g ( i ) ( x , x ^ ) (3-5) L_{stft}^{(i)}(\bold{x}, \bold{\hat{x}}) = L_{sc}^{(i)}(\bold{x}, \bold{\hat{x}}) + L_{mag}^{(i)}(\bold{x}, \bold{\hat{x}}) \tag{3-5} Lstft(i)(x,x^)=Lsc(i)(x,x^)+Lmag(i)(x,x^)(3-5)

spectral convergence (sc) loss为

L s c ( i ) ( x , x ^ ) = ∣ ∣ ∣ S T F T ( i ) ( x ) ∣ − ∣ S T F T ( i ) ( x ^ ) ∣ ∣ ∣ F ∣ ∣ ∣ S T F T ( i ) ( x ) ∣ ∣ ∣ F (3-6) L_{sc}^{(i)}(\bold{x}, \bold{\hat{x}}) = \frac{|| |STFT^{(i)}(\bold{x})| - |STFT^{(i)}(\bold{\hat{x}})| ||_F}{|| |STFT^{(i)}(\bold{x})| ||_F} \tag{3-6} Lsc(i)(x,x^)=STFT(i)(x)FSTFT(i)(x)STFT(i)(x^)F(3-6)

magnitude loss为
L m a g ( i ) ( x , x ^ ) = ∣ ∣ l o g ∣ S T F T ( i ) ( x ) ∣ − l o g ∣ S T F T ( i ) ( x ^ ) ∣ ∣ ∣ 1 L_{mag}^{(i)}(\bold{x}, \bold{\hat{x}}) = || log|STFT^{(i)}(\bold{x})| - log|STFT^{(i)}(\bold{}\hat{x})| ||_1 Lmag(i)(x,x^)=logSTFT(i)(x)logSTFT(i)(x^)1

没错,效果这么好的一个网络就是这么简单明了。训练的时候当然也用到了一些数据增强等等的方法,这里就不说了,想了深入了解的可以看参考资料中的文献和代码。

参考资料

[1] 雷霄骅-谱减法语音降噪原理
[2] 于泓-语音增强-谱减法
[3] https://github.com/timsainb/noisereduce
[4] 于泓-语音增强-维纳滤波
[5] https://github.com/facebookresearch/denoiser
[6] Real Time Speech Enhancement in the Waveform Domain
[7] 卡尔曼滤波器详解——从零开始(3) Kalman Filter from Zero

  • 12
    点赞
  • 106
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
目前,语音降噪算法有很多种。频谱减法有原理简单、容易实现的优点,是 语音降噪的常用算法。但是频谱减法也有如下两个缺点:一是频谱减法性能的好 坏主要依赖于噪声估计,而噪声估计又依赖于端点检测算法。在噪声水平强度高 时,一般的端点检测算法会失效,无法检测出信号中噪声帧的具体位置,从而影 响了噪声估计值的准确性;二是带噪信号经过频谱减法降噪后,由于在谱减时减 去的是同一噪声估计值,就使得信号会随机出现分离的谱区,这些谱区就形成了 容易让人耳听觉疲惫的“音乐噪声”。 针对频谱减法上述的两个缺点,本文对其进行了改进。第一:为了使得噪声 端点检测算法在噪声水平高时也能获得正确的检测,我们求带噪信号的幅度值均 值,并根据这个均值与带噪信号开始数帧的幅度均值大小来判断带噪信号是以噪 声开始还是以带噪语音信号开始。然后根据连续两帧信号的差值的变化来判断噪 声帧和语音帧的起始位置,同时我们在判断的同时把得到的均值做为噪声估计值, 这样既考虑到了连续前后两帧信号的相关性又能够衰减噪声。除此之外,基于本 文改进的噪声端点检测方法的噪声估计值能够在整个带噪语音信号上快速的更新 噪声估计值,提高频谱减法的实时处理能力。第二:为了减少频谱减法所引入的 音乐噪声,我们实现了用 LMS 算法在时域上进行语音增强,来处理谱减后的降噪 信号。LMS 算法能够在降低噪声水平的同时把音乐噪声转换为能量更低的白噪声, 减少了音乐噪声对人耳的刺激,有助于提高处理后的音频的语音质量,提高主客 观评价效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七元权

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值