随机梯度下降法步长的选择

1、随机梯度下降法步长的选择

以前网上有看到过,说是最好按3倍来调整,也就是0.00001、0.00003、0.0001、0.0003、0.001、0.003、0.01、0.03、0.1、0.3……然后确定范围之后再微调。

如果α取值过大,可能会导致迭代不收敛,从而发散。所以,一开始α的取值也要比较小心才行。

随着迭代次数的增加,一般需要慢慢减小α,因为这样能得到一个更好的结果。至于怎么减小α,也是有很多种策略,可以每次迭代都更新α的值,如α *= 0.96, 也可以 α*=α, 也可以每迭代几次更新一次α的值,方法很多,什么方式更好呢?实验吧……这跟数据有很大关系。

关于正则化参数λ的取值,因为才疏学浅,了解得不多,所以不便多说。不过一般来说λ不会取太小,我的感觉是0.001和1之间吧,也可以每次迭代都更新λ的值。比如一开始取比较小的值,然后随着迭代次数的增加,慢慢增加λ。

总结下,学习速率α越大,收敛越快,正则化参数λ越大,收敛越慢。收敛速度太快,可能一下子就越过极值点,导致发散;太慢则可能需要迭代非常多次,导致时间成本非常高。所以,α和λ取到一个合适的值,还是非常重要的。

***********2013年5月26日13:58:07*************

刚看到一种调整α的方法,就是 \(\alpha_{k} = \alpha_{0} \frac{\tau}{\tau+k}\) , 当然,α的初始值也不能太大,不然还是会发散。

这个策略一个不好的地方就是 \(\tau\) 的取值问题,糟糕的取值可能会导致收敛非常慢。


原文地址:http://ju.outofmemory.cn/entry/31137


2、梯度下降法步长的取值范围

在梯度下降法中,我们往往需要设置一个合适的步长。但是有时步长设置太大,使得我们要估计的系数在迭代过程中不断增大,最后趋于无穷大,程序陷入死循环或溢出。下面的讨论给出了步长上限的一个估计,其中参数的迭代公式是(使用矩阵表示):

其中是步长。将这个公式变形一下,得到

可以看出,对的每个分量,都是相同的。因此后面我们可以用分量来进行讨论,这时候上面的公式就是一个标量公式。

对于这个迭代,要么发散,要么收敛于一个稳定点,要么在多个稳定点中做周期震荡(即周期N)。因此我们可以计算其收敛点,并计算其收敛条件。

收敛时,它是一个稳定点,即,解出,与最小二乘法给出的结果一致。

按照非线性理论中的稳定性条件要求:,即,因此(这里使用了标量来求解)。

所以,当步长超出这个范围,是不稳定的,很容易导致发散。


原文地址:http://blog.sciencenet.cn/blog-477629-822983.html


  • 0
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习、深度学习、⼈⼯智能三步⾛,⼈⼯智能必须知道的 ⼏种深度学习算 序 序 声明:以下是博主精⼼整理的机器学习和AI系列⽂章,博主后续会不断更新该领域的知识: 有需要的⼩伙伴赶紧订阅吧。 ⼈⼯智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们⽿边:⼈⼯智能(Artificial Intelligence)、机器学习(Machine Learning)、 深度学习(Deep Learning)。不少⼈对这些⾼频词汇的含义及其背后的关系总是似懂⾮懂、⼀知半解。 ⼈⼯智能的研究领域也在不断扩⼤,上图展⽰了⼈⼯智能研究的各个分⽀,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、 ⾃然语⾔处理、推荐系统等。 ⼈⼯智能⼀定程度上来说是机器学习喝深度学习的深层次应⽤,要想学好⼈⼯智能,我们需要掌握的哪些经典算呢? ⼀起来看看吧。 前⾔ 前⾔ 深度学习是很多⼈⾯临的⼀个挑战,因为它在过去的⼗年中已经慢慢地改变了形式。为了在视觉上设置深度学习,下图展⽰了AI,机器学习 和深度学习三者之间关系的概念。 ⼈⼯智能领域⼴泛,已经有很长⼀段时间了,深度学习是机器学习领域的⼀个⼦集,AI的⼀个⼦领域。 ⼀般将深度学习⽹络与"典型"前馈多层⽹络(FP)区分开来的⽅⾯如下: ⽐以前的⽹络更多的神经元 更复杂的连接层的⽅式 "寒武纪⼤爆炸"的计算训练能⼒ ⾃动特征提取 当我说"更多的神经元",意思是神经元数量已经上升了多年来表达更复杂的模型。 然后,深度学习可以被定义为具有四个基本⽹络体系结构之⼀中的:⼤量'参数和层'的神经⽹络: ⽆监督的预训练⽹络 卷积神经⽹络 回归(复)神经⽹络 递归神经⽹络 在本⽂中,我们主要关注后三种架构。 ⼀、卷积神经⽹络 ⼀、卷积神经⽹络 是基本上已经跨越使⽤共享权重的空间延伸的标准神经⽹络。CNN被设计为通过在内部卷积来识别图像,其看到图像上识别的对象的 边缘。 ⼆、回归神经⽹络 ⼆、回归神经⽹络 是基本上已经通过具有边缘,其递进给到下⼀个时间步长,⽽不是成在同⼀时间步骤中的下⼀层跨越时间延长标准神经⽹络。RNN被 设计为识别序列,例如语⾳信号或⽂本。它⾥⾯的循环意味着⽹络中存在短暂的内存。 三、递归神经⽹络 三、递归神经⽹络 更像是⼀个分层⽹络,其中输⼊序列确实没有时间⽅⾯,但输⼊必须以树状⽅式分层处理。以下10种⽅可以应⽤于所有这些体系结 构。 经典算 经典算 1 - 反向传播( 反向传播(BP) ) Back-propagation只是⼀种计算函数偏导数(或梯度)的⽅,函数具有函数组成的形式(如神经⽹络)。当你使⽤基于梯度的⽅(梯 度下降只是其中之⼀)解决优化问题时,你需要在每次迭代中计算函数梯度。 对于神经⽹络⽽⾔,⽬标函数具有合成的形式 你如何计算梯度? BP算是Delta规则的推⼴,要求每个⼈⼯神经元(节点)所使⽤的激励函数必须是可微的。BP算特别适合⽤来训练前向神经⽹络,有两 种常见的⽅式来做到这⼀点: (⼀)分析微分,你知道函数的形式,只需使⽤链式规则(基本演算)来计算函数梯度。 (⼆)使⽤有限差分进⾏近似微分。 其中(⼆)⽅的计算量很⼤,因为评估函数的数量级是 O(N),其中 N 是参数的数量。与分析微分相⽐,就相形见绌了。然⽽,有限 差分通常⽤于在调试时验证后端时很有效。 2 - 随机梯度下降随机梯度下降(SGD) ) 想想渐变下降的⼀种直观的⽅式是想象⼀条源于⼭顶的河流的⼩路。 梯度下降的⽬标正是河流努⼒实现的⽬标 - 即到达从⼭上迈着扯着蛋的步⼦溜向⼭脚。 现在,如果⼭的地形是这样形成的,即在到达最终⽬的地(这是⼭麓的最低点)之前,河流不必完全停下来,那么这是我们所希望的理想情 况。 在机器学习中,我们已经找到了从初始点(⼭顶)开始的解的全局最⼩值(或最优值)。 但是,这可能是因为地形的性质使得路径上的⼏个坑,这可能会迫使河流陷⼊困境,在机器学习⽅⾯,这种'坑'被称为局部最优。 因此,梯度下降倾向于卡在局部最⼩值,这取决于地形的性质(或ML中的函数)。 但是,当你有⼀个特殊的⼭地形(形状像⼀个碗,在ML术语中称为凸函数),该算始终保证找到最佳。 你可以想象这再次描绘了⼀条河流。这些特殊的地形(⼜称凸函数)总是在ML中优化的祝福。另外,取决于你最初从哪⾥开始(即函数的 初始值),你可能会⾛上⼀条不同的路。同样,根据河流的爬升速度(即梯度下降算的学习速率或步长),你可能会以不同的⽅式到达最 终⽬的地。 3 - 学习率衰减 学习率衰减 根据随机梯度下降优化程序调整学习率可以提⾼性能并减少训练时间。有时这被称为 学习速率退⽕ 或 ⾃适应学习速率。 最简单的学习速率:是随着时间的推移⽽降低学习速度。当使⽤较⼤的学习速率值时,它们具有在训练过程开始时进⾏⼤的改变的益处,并 且降低了

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值