量化交易
文章平均质量分 74
小壁虎的春天
这个作者很懒,什么都没留下…
展开
-
史上最全私募基金的投资模式和策略总结
模式一股票投资股票投资系以国内股票为主要的投资标的,是目前国内阳光私募行业中最主流的投资策略,有近7成的阳光私募基金采用该种策略。具体可以分为多头投资策略和空头投资策略两种。1、代表机构价值投资:重阳投资、景林资产、淡水泉投资成长投资:鼎锋资产、汇利资产、明曜投资趋势投资:展博投资、星石投资、源乐晟资产行业投资:从容投资的医疗系列基金阿尔法策略:尊嘉资产、朱雀投资(阿尔法系列基金)套期保值:博颐投资、世诚投资趋势策略:重阳投资(对冲系列基金...转载 2021-02-04 17:29:07 · 7490 阅读 · 0 评论 -
一文详解私募基金投资策略(8大类17小类)
私募策略架构图股票策略股票策略是以投资股票类资产为主要收益来源,其投资标的为沪深上市公司股票,以及和股票相关的金融衍生工具(股指期货、ETF期权等)。股票策略是目前国内阳光私募行业最主流的投资策略,约有80%以上的私募基金采用此策略,按照风险暴露的大小排序分别为股票多头、股票多空、股票市场中性三种子策略。股票多头策略股票多头是指基金经理基于对某些股票看好从而在低价买进股票,待股票上涨至某一价位时卖出以获取差额收益。该策略的投资盈利主要通过持有股票来实现,所持有股票组合的涨跌幅决定了基金的转载 2021-02-03 10:44:15 · 9223 阅读 · 0 评论 -
金融算法交易
最近不少朋友问我是如何用电脑做金融交易的。这其实很复杂,并不是几句话能说明白的。根据听众的层次,这个回答可以是从最简单的比较敷衍的:“电脑和人脑差不多,用电脑模拟人脑就可以了。”……到比较复杂的:“我们设计了神经网络,用了强化学习的算法来训练金融市场数据。”……再到负责任的:“我们用数学模型解决金融数据里的fat-tail distribution的问题,用卷积神经网络来做交易模式识别和判断。”在不讲数学、概率、统计、数据模型的情况下,简单讲讲金融算法交易吧。这里不会讲太多策略模型,而是只想说说机器交易转载 2021-02-02 16:32:01 · 5115 阅读 · 0 评论 -
何为量化投资?
量化投资的概念最初由西蒙斯的文艺复兴基金引入公众视野,却始终蒙着一层神秘的面纱。究竟什么是量化投资?如今,若还将量化投资简单的理解为基于数学模型由计算机程序控制的投资,未免太过狭隘。事实上随着近几十年投资学作为一门独立学科高速发展,从定性研究到定量研究是学科发展的必然趋势,数量化的触角已经渗透到投资流程的方方面面,如今可以说是无投资不量化,无量化不投资。时至今日,广义的量化投资已经发展成为基于现代科学方法的理论体系、研究方式以及工程系统的总和。放弃量化投资,无异于放弃了现代科学千百年来积累形成的行之有效转载 2021-02-02 13:46:55 · 964 阅读 · 0 评论 -
在量化金融中15个最流行的Python数据分析库
作者:Hear7 来源:博客园 原文链接:https://www.cnblogs.com/caodneg7/p/10225611.htmlPython是当今应用最广泛的编程语言之一,以其效率和代码可读性著称。作为一个科学数据的编程语言,Python介于R和java之间,前者主要集中在数据分析和可视化,而后者主要应用于大型应用。这种灵活性意味着Python可以作为一个单一工具来汇集整个工作流。也就是说Python本身是被允许扩充的,并非所有的特性和功能都集成到语言核心中。Python提供了...转载 2021-01-26 14:15:46 · 1179 阅读 · 0 评论 -
【掘金使用技巧9】期货加权指数合成
掘金中没有直接获取期货加权指数的接口,怎样才能用原始数据合成出加权指数?原理加权指数的计算原理就是将该品种每一天所有上市且未退市的合约按照当日持仓量作为权重加权求得,共包括:开盘价、收盘价、最高价和最低价。所需数据所有合约标的代码对应接口:get_instruments()持仓量对应接口:get_history_instruments()历史行情对应接口:history()代码实现# coding=utf-8from __future__ import print_转载 2021-01-25 14:55:26 · 791 阅读 · 0 评论 -
跨期套利的四大核心逻辑
跨期合约的核心矛盾任何一个期货合约从最初上市到最终进入交割月,在不同的时间段内,其主要矛盾是不同的,或者说驱动逻辑是不同的。因此,我们需要对将不同月份的合约进行区别对待,根据其距离交割月的远近,选择不同的交易逻辑。合约期限的理解对于期货合约的划分,需要一定的交易经验,据我个人观察和总结,我把一个期货合约距离交割月的远近分为三个主要阶段:远期合约、近期合约、即期合约。具体的划分标准和解释说明如下:远期合约:距离交割月在2个月以上,离交割月较远。 近期合约:距离交割月在1-2个月之间,离.转载 2021-01-22 14:38:23 · 1887 阅读 · 0 评论 -
如何利用市场情绪套利
股票市场大概是最能反应人类情绪的地方。看过一些游资的操作总结,觉得还是有一些收获。试着把他们的一些观点,结合我自己的体会,理一理。基础逻辑:短期的市场情绪是有规律可循的,长期是无法预料;揣摩市场情绪,进而判断风险和收益的比较,来指导操作。市场情绪如果量化,分解?1. 成交量来看?养家的原话是:短线好手仓位的高低通常会与市场整体交易量呈现一定的正相关性。理解:一个活跃的市场,量能需要达到相对高一点的水平,如同3,4月份转债市场交易额从200亿突增到600亿左右,溢价上升,小转债脉冲,5,6月份转载 2021-01-22 14:32:19 · 1307 阅读 · 0 评论 -
RSI指标各种买卖信号公式源码分享
相对强弱指数RSI是目前流行最广,使用最多的技术指标之一,他是技术分析大师威尔德创造的。RSI之所以流行最广,是因为他不但可以应用在股票市场,在期货和外汇市场也有较好的应用。RSI是以一特定时期内股价的变动情况来推测价格未来的变动方向。简单的说,就是一段时间,股价涨幅和跌幅的比值,下图是公式。以上主要是理论,如果你不会写代码,也不需要过多了解,知道有那么回事就可以了。实际的应用中,一般我们用5日、10日、14日作为指标的周期,或者用6日、12日、24日作为计算周期的较多。当然也可以修改成,适合自转载 2021-01-21 13:42:46 · 12490 阅读 · 1 评论 -
MACD柱堆形态指标公式
说明:副图指标,别人的指标拿出来分享,筹码越集中线就越密集例图:指标源码:DIF:=(EMA(CLOSE,12)-EMA(CLOSE,26)),COLORWHITE;DEA:=(EMA(DIF,9)),COLORYELLOW;MACD:(DIF-DEA)*2,COLORSTICK,COLORGREEN;MACDX:=MACD;TJG:=NOT(NAMELIKE('S') OR NAMELIKE('*S')) AND DYNAINFO(8)>0;VA1:=HHV转载 2021-01-20 15:10:37 · 3287 阅读 · 0 评论 -
MACD指标操盘术
说明:副图指标,注意红箭头异动,做了相应的选股例图:源码:DIF:EMA(CLOSE,12)-EMA(CLOSE,26);DEA:EMA(DIF,9);MACD:(DIF-DEA)*2,COLORSTICK;DRAWICON(REF((DIF-DEA)*2,1)<=LLV((DIF-DEA)*2,5) AND(DIF-DEA)*2>=REF((DIF-DEA)*2,1) AND (DIF-DEA)<0,(DIF-DEA)*2*1.2,1);MACD转载 2021-01-20 14:18:31 · 1462 阅读 · 0 评论 -
KDJ指标的一般研判标准
随机指标KDJ主要是通过K、D和J这三条曲线的所构成的图形关系来分析股市上的超买超卖,走势背离及K线、D线和J线相互交叉突破等现象,从而预测股价中、短期及长期趋势。KDJ是市场上绝大多数投资者熟知的分析工具,但具体运用时,投资者可能会发现KDJ的分析结果和实际走势存在着特别大的差别,有时还会得出相反的结论,这其中原因主要是绝大多数投资者只知道KDJ的一般分析原理和方法,而对KDJ分析指标的一些内涵和特定的分析技巧知之甚少。本节在介绍股市分析中市场上流行的KDJ的一般研判技巧和分析方法上,重点挖掘KDJ指标的转载 2021-01-20 10:40:14 · 380 阅读 · 0 评论 -
MACD指标所应当遵循的基本原则
1.当DIF和DEA处于0轴以上时,属于多头市场,DIF线自下而上穿越DEA线时是买入信号。DIF线自上而下穿越DEA线时,如果两线值还处于0轴以上运行,仅仅只能视为一次短暂的回落,而不能确定趋势转折,此时是否卖出还需要借助其他指标来综合判断。2.当DIF和DEA处于0轴以下时,属于空头市场。DIF线自上而下穿越DEA线时是卖出信号,DIF线自下而上穿越DEA线时,如果两线值还处于0轴以下运行,仅仅只能视为一次短暂的反弹,而不能确定趋势转折,此时是否买入还需要借助其他指标来综合判断。3.柱状线收缩和转载 2021-01-20 09:54:53 · 201 阅读 · 0 评论 -
扑克与投资哲学,活着最重要
活着最重要讲到扑克牌博弈和投资,人们通常都急于学会赚钱的招数,其实我个人认为赚钱方法是不容易学的,需要很多经验和悟性。初学者要迅速提高“段位”,倒是应该重点先练练防守。防守是有一定套路,可以学习的。在我看来,博弈和投资取得成功的先决条件都是要做好防守,保住本钱,然后耐心等待真正的机会。总而言之,绝对不能在革命胜利前牺牲。别以为这很容易做到,且不说我们周围那些“发财未遂身先死”的赌友股友,即便在投资界绝顶高手中,从云端跌落者也大有人在。且看几个例子:杰西-利弗莫尔:《股票作手回忆录》中的主人公,投机界转载 2021-01-19 16:15:13 · 1617 阅读 · 0 评论 -
股票量化指标库:stockstats
stockstats 提供基于pandas.DataFrame的包装,包含股票统计/指标。安装pip install stockstats工具包信息stockstats 0.3.2支持的统计/指标有: 变化(百分比) 增量 置换(基于零) 日志返回 最大范围 最小范围 中=(关闭+高+低)/3 比较:le、ge、lt、gt、eq、ne 计数:向后(C)和向前(FC) SMA:简单移动平均值..转载 2021-01-19 10:40:49 · 3888 阅读 · 0 评论 -
“量化之神”西蒙斯退位,解密金融模型和量化投资帝国
在为自己、员工和客户创造了巨额财富之后,即将在下一次生日跨过这一门槛的西蒙斯,将辞去其600亿美元规模的对冲基金文艺复兴科技公司(Renaissance Technologies,以下简称“文艺复兴”)董事长一职。“我相信是时候了,”西蒙斯在写给投资者的信中写道。经过了数年的酝酿,信件的出现正式标志着这位神秘对冲基金“掌门人”退出。数学家出身的“掌门人”吉姆•西蒙斯是历史上最伟大的对冲基金经理之一,在全球投资业内,他的名气并不亚于索罗斯,更是被认为是保尔森、达利欧这些业内领军者的前辈。他曾帮助开转载 2021-01-19 09:42:26 · 3505 阅读 · 0 评论 -
【掘金使用技巧8】用掘金编写常用技术指标
来源:掘金量化社区 作者:四两 原文链接:https://bbs.myquant.cn/topic/2050掘金中缺少一些常用的技术指标函数,但在编写策略时,免不了要用到指数指标来帮助决策。因此,小编汇总了几个常用的技术指标,基于掘金的框架编写成函数,大家可以在使用时参考一下。提示:行情软件比如通达信的一些指标都是基于股票上市首日计算得到的,如果计算时只用小部分的时间序列,得到的结果和通达信软件是不一致的。为了保持一致,所有指标都按照上市首日计算。前期准备# c...转载 2021-01-18 10:08:24 · 1550 阅读 · 2 评论 -
Python量化资源大合集
量化可以简单分为数据管理、策略分析和策略执行三个模块,数据是基础,策略分析是核心,其中策略自动化执行(算法交易)在国内由于政策限制实施起来比较麻烦。从Python的角度看,数据层往下分解,要学习的模块主要有Pandas、Numpy、tushare、pandas_datareader以及一些爬虫库等。策略层往下分解,要掌握的基础工具包括Pandas、matplotlib、scikit-learn、TA-lib、statsmodels等等。当然,在学习上述金融量化常用库前,系统的掌握Python编程基础是很..转载 2021-01-15 15:15:07 · 1600 阅读 · 1 评论 -
【掘金使用技巧7】如何从通达信等迁移到掘金
引言一些用户是从通达信等软件上切换过来的,对于掘金框架及python语言不是很了解,很难上手。对此,小编整理了一些基本要点以及一些简单的示例,希望对大家有帮助。从结构开始说起通达信这类软件在编写公式之前首先要确定一个频率,是日线级别、分钟级别还是其他级别,然后再定义公式,这个选择的过程对应掘金python语句中的订阅函数(subscribe)。如果在通达信中选择日线频率,在掘金中就订阅’1d’频率。(特别说明,掘金除了bar数据,还支持tick级别的数据,用户可以在更高频率下编写策略)。d转载 2021-01-12 09:56:16 · 327 阅读 · 0 评论 -
股票指标库 TA-Lib 安装方法
windows 安装首先你要明确你的系统版本,win32系统还是Linux,X86还是X64;如果你的系统是x86平台,在安装了anaconda 的基础上,可以直接使用pip安装,命令如下:pip install talib如果你的系统是x64平台,直接使用上述命令安装汇报错,原因在于python pip源中TA-Lib是32位的,不能安装在X64平台上,从TA-Lib的官网[http://ta-lib.org](http://ta-lib.org/)下载的安装包其实也是32位的,如果你的系转载 2021-01-08 14:14:56 · 633 阅读 · 0 评论 -
【掘金使用技巧6】获取股票停牌价
怎样获取股票停牌前一日收盘价?目前掘金提供的接口没有能够直接获取停牌前一交易日收盘价,想要查询停牌价格,只能利用其他数据接口判断。因此小编将一些接口组合,写成了一个函数供大家参考交流。设计思路1. 函数功能查询停牌日及停牌日前一日的收盘价2. 输入参数和输出变量输入参数:为了函数的便捷,希望只需要输入股票代码、开始时间和结束时间。输出变量:停牌日、停牌日前一日收盘价3. 需要的原始数据股票在开始时间到结束时间的历史收盘价(日频)、交易所在开始时间到结束时间全部交易日。4转载 2021-01-06 11:27:34 · 364 阅读 · 0 评论 -
【掘金使用技巧5】实时模式下利用tick合成变化的bar
对应场景:在看盘时,经常会看到不断伸缩变化的k线。由于每时每刻都会有新数据推送过来,这些长周期的k线需要不断更新,才能反映出标的最新状态。变化的k线其本质上就是不断用更新、更短周期的数据合成长周期的k线。举个例子:假设我的策略是以5分钟bar为基础运行的,在终端里,只有这5分钟结束后对应的bar数据才会返回。但我觉得等5分钟bar返回时再进入买卖逻辑时黄花菜都凉了,不如每返回一个tick就更新一次5分钟bar,这样我得到的5分钟bar虽然是个“残缺的”bar,但它涵盖了标的最新信息。怎...转载 2021-01-06 11:25:13 · 1428 阅读 · 1 评论 -
【掘金使用技巧4】list[dict]类型数据的提取与储存
在掘金终端的使用过程中,一些数据的提取和储存不太方便。小编针对数据的提取和储存问题,提供一些解决方法和使用范例,欢迎大家一起学习讨论。list[dict]类型数据,以tick里面的quotes为例tick数据是一类比较特殊的数据,返回字段中的quotes代表五档行情,是一个list[dict]的结构。其中quotes[0]-quotes[4]代表1-5档行情,每一档行情里面又分为"bid_p"、"bid_v"、"ask_p"、"ask_v"四个字段,对应的格式为字典。先看一下quotes的结构转载 2021-01-06 11:21:24 · 918 阅读 · 0 评论 -
【掘金使用技巧3】定时任务的多种可能
定时任务的多种可能引言在使用掘金提供的定时任务接口中,schedule()接口能够实现定时任务的功能。但在使用过程中发现,定时任务的参数只能设置为“每天(1d)”、“每周第一天(1w)”、“每月第一天(1m)”。有时会有其他频率的需求,比如每月最后一天,这时应该怎么办?每个月的第n天运行要想实现每个月的第n天运行,也需要借助我们的定时任务,将schedule函数中的date_rule设置为“1d”,让algo函数每一天都运行。但我们只想让它在每个月的最后一天执行,所以要加一个时间判断语句。转载 2021-01-06 11:17:13 · 631 阅读 · 0 评论 -
【掘金使用技巧2】掘金返回数据中时间的处理方法
掘金输出的时间数据处理方法掘金在为使用者提供数据时,有一类数据处理起来有些麻烦,这类数据就是时间数据。它们长这样:或者这样:查看一下它们的类型,发现有datetime,datetime64,Timestamp等等。这么多各种各样的类型,我们应该怎样处理呢?转化成标准的“年月日”格式以tick里面的“created_at”为例,该数据由“年、月、日、时、分、秒+时区”组成。想要转化为标准的年月日时分秒数据,需要用到datatime库中的strftime。strftime是将一个字符串转载 2021-01-06 11:11:58 · 611 阅读 · 0 评论 -
【掘金使用技巧1】合成长周期k线的函数
用日线合成长周期k线掘金API中的接口最长的周期是‘1d’的,如果想要合成频率为周、月甚至年的应该怎么办呢?为此,写了一个函数来实现日k线合成长周期k线,欢迎大家一起讨论,不足之处请多指教。基本思路用日线合成长周期的k线并不难,只需要确定好合成的周期以及需要的数据即可。周期:一般行情软件上提供年k、月k、周k,我也选择年、月、周再加一个季度频率。数据:开盘、收盘、最高、最低、成交额、成交量。确定好周期和需要的数据以后,就可以开始写函数了。以周线为例,要想合成周线,主要有以下几步:..转载 2021-01-06 11:08:09 · 1020 阅读 · 0 评论 -
talib包计算MACD值和行情软件有差异的解决方法
talib包是计算许多行情指标必备的第三方库,但在计算过程中发现,计算出来的数值和行情软件的计算方法存在很大的差异,可能会导致策略出现错误。为此,专门写了一个函数解决这个问题。欢迎大家一起交流讨论。MACD的计算MACD的计算很简单,主要包括DIF、DEA和BAR三个参数。计算方式如下:(图片来源百度百科)注:在计算过程中,需要注意数据的初始化。上市首日,DIF、DEA、BAR默认为0.但次日计算中EMA12和EMA26是按照上市首日的收盘价来计算的,所以这里面涉及一个初始化的问题。在计.转载 2021-01-06 10:42:58 · 6513 阅读 · 3 评论 -
talib函数功能一览表
1.简介Talib是一款非常强大的技术分析指标计算第三方包,于1999年由Mario Fortier最早上传。由于底层框架是用C语言搭建的,所以python在使用时的帮助文档较少。为了方便使用,参考HuaRongSAO在github上的发布的内容整理出以下文档。(原文地址:https://github.com/HuaRongSAO/talib-document)2.安装和导入一般情况下直接用pip安装Talib会出现各种各样的问题,所以推荐用whl的方式安装。安装流程如下:Whl下载地址:h转载 2021-01-06 10:35:23 · 5924 阅读 · 1 评论 -
如何控制回撤
在之前多处提及用风险(最大回撤)的大小来反推开仓资金这种资金管理的方法,但是没有一个章节来专门说清楚具体的细节,因为这一点至关重要,所以我认为要单列一个章节来详细讲清楚。量化交易最核心的量化部分是什么,我个人认为是对风险的量化,风险是所有金融交易中最重要的一个变量,其实评判一个投资者优秀还是平庸,最关键的也就是看能否妥善处理风险和盈利之间的关系。主要的风险分为两种,一种是突然破产的黑天鹅事件,这种风险的控制要从整体的单边仓位去控制它,控制起来也比较简单,你要做的就是轻仓参与就行;难以控制的是另外一种转载 2021-01-05 16:39:46 · 1693 阅读 · 1 评论 -
从凯利公式开始谈资金管理
凯利公式解决了一个确定的胜率和赔率的情况下,每次用多少资金去冒险的问题,假设一个简单的丢硬币的赌局,丢到正面你得到2元钱,丢到反面你输掉到1元钱,你一共有100元钱的总资产,你可以一次进行任意金额的押注,比如可以一次100元全压上,也可以一次压1元钱。显然这是一个优势赌局,你每参加一次这个赌局,你就能够预期获利1元,应为丢硬币的胜率是50%,而赔率是2:1,即你赢的时候可以比输的时候多赢1倍的钱。但是,你该用多少钱去下注呢,显然你不能将你的本金100元全部下注,虽然这是一个优势赌局,但是如果你用10转载 2021-01-05 16:35:49 · 1244 阅读 · 0 评论 -
如何避免期货程序化交易中的过度拟合现象
在建立量化交易模型的过程中,很多人都会经历过度拟合的情况。过度拟合其实是机器学习领域和统计学领域的一个概念。一般被用作表示一个模型在测试时表现的非常好,但是在实践过程却成绩却不如预期。对于传统的机器学习来说过度拟合的影响不是很明显,但金融数据时间序列特征和数据的高噪音特性则决定了过度拟合会带来的巨大影响。所以,我们在进行建模时一定要严谨避免过度拟合的情况发生。1、过度拟合产生的原因程序化交易系统的设计过程包括两个部分,这两个部分都有可能造成过度拟合。交易系统设计的第一部分是形成一个完整的交易转载 2021-01-05 10:28:13 · 817 阅读 · 0 评论 -
量化交易 | 参数最佳化的三大陷阱
在很多量化交易者最初优化参数的时候,往往容易或多或少的出现三种类型的错误:前视偏差、过度优化和曲线拟合。这三种陷阱只要在策略开发和参数优化的过程中出现一种,造成的结局是灾难性的,这些错误可以说是量化交易者前面的地雷,稍有不慎,就容易爆炸。首先,我们要谈的是前视偏差,前视偏差是指在策略的开发中,采取了未来的一些信息,而这些信息在实盘操作中是基本上不可能实现的。前视偏差主要表现在两个方面,一是未来函数,二是信号闪烁。举个例子来说明未来函数,如果某个均线策略的规则是:“当前价格上穿均线的时候以开盘价开仓”转载 2021-01-05 14:45:53 · 1277 阅读 · 0 评论 -
特雷诺指数、詹森指数和夏普比率
根据不同的风险度量方式,风险调整的收益指标包括多种,其中较为常见的是基于均值-方差模型调整的收益指标。这类指标基于马科威茨的均值-方差模型和CAPM模型,采用收益率的标准差(波动)或者β系数来衡量市场风险的大小。常见的指标有特雷诺(Treynor)指数、夏普(Sharpe)比率、詹森(Jensen)指数等。特雷诺指数(Treynor index)特雷诺指数是基金的收益率超越无风险利率的值与系统性风险的比值。这个指数衡量的是基金承担单位系统性风险所获得的超额收益。特雷诺指数越大,说明风险调整...转载 2020-12-29 16:02:43 · 8872 阅读 · 0 评论 -
怎样设计完整的交易系统(主观交易和程序化交易均可借鉴)
做程序化交易的投资者不可避免要涉及到交易系统,我对交易系统的理解是从交易规则的设计,到最后离场的一整套规则,其中包括风控。那么设计交易系统的过程中需要注意哪些事项?怎么设计一整套可执行的交易系统呢?一、交易系统设计的原则1、完整性一个完整的交易系统包括:分析预测、决策、操作、资金管理与风险控制等。一个完整的交易系统,应包括入场、离场和资金管理等各项条件。2、交易系统设计因符合自身特点交易系统是对自身投资理念的集合,因此在设计交易系统时应充分了解自身的优势和劣势,将自身的投资理念置入其中设转载 2020-12-22 15:24:14 · 1404 阅读 · 0 评论 -
算法帝国:华尔街交易怪兽的核武器缔造史
这是一段通俗的读物,更是一段算法交易的历史钩沉,华尔街的每个角落逐渐被算法所侵蚀,思考者,依然还是拖着额头,但却不得不接受未来的现实!1980年华尔街的黑客生涯:天时地利20世纪70年代末期,算法开始进入人们的工作,这一趋势席卷了世界各地的金融市场,标志着华尔街黑客时代已然来临。华尔街逐渐吸引了美国越来越多杰出的数学家和科学家投身于编写交易算法的工作。在布莱克·斯科尔斯统治市场之前,已经有少数工程师和科学家进入曼哈顿下城市场了,但他们大都是外来移民。麻省理工、哈佛和此类高等学府的工程楼和科学.转载 2020-12-22 15:21:49 · 588 阅读 · 1 评论 -
这篇文章几乎回答了你对量化对冲的所有疑问
一、基础篇1、在市场不稳定的情况下如何稳健套利?套利,本就是很稳健的一种盈利方式。套利和盈利不同,相信您问的是在市场不稳定的情况下稳健“盈利”。先明确量化和对冲的概念,可下载OA系统中“量化对冲 产品基础知识学习手册”进行详细学习。量化对冲产品在构建股票多头的同时,也构建期货空头。这种操作在市场不稳定时,可以对冲市场的系统风险,从而留下股 票多头特有的盈利。2、量化对冲产品的操作流程是怎样的?先用量化投资的方式构建股票多头组合,然后空头股指期货对冲市场风险,最终获取稳定的超额收益。3、收转载 2020-12-22 15:12:26 · 678 阅读 · 0 评论 -
了解量化交易,小白新手必看
长为投资高手需要具备什么样的特质?高超的技术分析能力?独到的价值分析能力?全面的基本面分析构建能力?抑或是三者的综合?……其实想成为投资高手,技术分析、价值分析和基本面分析能力,都是不可或缺的。但这并不说只要具备了这三种技能,就能成为投资高手。市场中有太多的人通读了艾略特、江恩等技术大家的理论、技术分析十分牛逼;也有很多人对经济大局的掌握程度不亚于一个经济学家;更有很多市场参与者都是自己开公司的、深刻了解该如何估量一家公司的价值的…但是他们在这个市场中往往都不是常胜将军,甚至在市场中转载 2020-12-22 14:47:10 · 718 阅读 · 0 评论 -
布林线应用的四条法则
多种情形下,运用布林线指标进行买卖,其操作的成功率远胜于KDJ、RSI甚至移动平均线。巧用布林线买卖将使我们有可能避开庄家利用一些常用技术指标诱多或者诱空的陷阱,因为庄家要想在布林通道线上做手脚,几乎是不可能的。布林线一般的应用规则是,当股价向下击穿支撑线的时候买点出现,而向上击穿阻力线卖点出现。而平均线是考验一个趋势是否得以继续的重要支撑或阻力。这种规律在盘整或上升的趋势中有较好的指示作用,而在一轮下跌趋势中,对于下边支撑线的击穿并不是真正的买点。在常态范围内,布林线使用的技术和...转载 2020-12-22 14:23:16 · 1080 阅读 · 0 评论 -
几种常见的交易系统类别
追溯历史,交易系统的存在和发展已经经历了近百年的时光,从我们所熟知的江恩、李佛摩尔到罗杰斯。1、突破系统其概念是如果如果有一些明显的波动,价格就会突破(向上或者向下)。突破系统通常监控价格的正常波动幅度,在价格突破正常幅度的时候开仓。比如期货交易中著名的四周规则就是使用这种方法,在价格高于最近4周的最高价格或者低于最近4周的最低价格的时候买入,在达到盈利目标或止损条件后卖出。2、趋势跟随交易系统趋势跟随交易系统是在高频交易被曝光前最流行也是最热门的交易系统类型。最早的趋势跟随交易策...转载 2020-12-22 10:51:48 · 740 阅读 · 0 评论 -
谈算法交易
导读:2016年10月7日亚洲早盘中,英镑汇率突发大幅千余点崩跌,短短两分钟内跌幅达6.1%,狂泻至1.18,后恢复1.24左右,刷新31年来最低值。英国央行正在调查英镑大幅下跌的原因,而市场的猜测主要三种:1.算法交易失误 2.市场操控 3.“肥手指”。那么什么是算法交易,我们聊聊算法交易。【解决问题】:为什么“闪崩”可能会与算法交易故障有关?【正文】【什么是算法交易?】当投资者有大量证券资产需要交易时,一般都会把交易拆细,分批执行。但是,这就出现了一个问题:如何安排这些交易是..转载 2020-12-18 13:44:01 · 1023 阅读 · 0 评论