FPGA挂载NVME SSD(一)

GA挂载SATA SSD需要SATA IP,IP报价动辄十几W,开源的IP也有,但都是基于V6或者V5等老器件的。现在好了,NVME SSD大行其道,而且不需要IP,可以说为广大爱好者带来的福音。国外的FPGA大牛Jeff Johnson写了一个FPGA挂载NVME SSD的教程http://www.fpgadeveloper.com/2016/04/zynq-pci-express-root-complex-design-in-vivado.html,并提供了完整的工程,支持XILINX的大部分7系列及最新的UltraScale系列。
在这里插入图片描述

  1. 下载完整的工程fpga-drive-aximm-pcie-2017.2.zip
  2. 解压并打开/Vivado目录,根据所用的开发板,运行相应的.bat文件创建工程,例如,我用的是ZC706且通过FMC HPC扩展子卡挂载SSD,则点击build-zc706-hpc.bat
  3. 打开生成的工程,生成bitstream,export并打开SDK
  4. 在SDK中创建工程,并将/SDK/common目录下的pcie_gen2_enumerate.c添加到工程中
  5. 搭建硬件环境
  6. 下载bitstream,并运行
  7. 串口显示如下:
    在这里插入图片描述
    由串口打印可知,SSD已LINK成功。
### FPGA NVMe SSD 实现方案概述 FPGA在实现高性能NVMe SSD读写方面具有显著优势,尤其是在定制化需求和实时处理场景中。以下是关于如何利用FPGA实现高效NVMe SSD的技术细节。 #### 架构设计 为了实现高效的NVMe SSD操作,通常需要将FPGA配置为Root Complex (RC),从而能够主动管理和控制作为Endpoint (EP)NVMe SSD设备[^2]。这种架构允许FPGA通过PCIe总线直接访问SSD的寄存器和存储区域,减少中间环节带来的延迟。 #### 协议支持 NVMe协议栈的解析是整个设计的核心部分之。具体来说,需要基于Xilinx AXI PCIe IP核构建Root Port架构,并完成以下功能模块的设计: - **BAR 寄存器组映射**:定义并初始化PCIe配置空间中的基址寄存器(BARs)[^2]。 - **队列管理**:按照NVMe标准实现提交队列(SQ) 和完成队列(CQ),并通过门铃寄存器通知SSD执行命令或返回结果[^2]。 #### 性能优化策略 尽管现有方案已经实现了较高的吞吐量(如ZCU106平台上可达2.3GB/s写入, 2.5GB/s读取)[^1],但仍可通过改进逻辑结构进步提升效率至接近理论极限值约3.94GB/s(Gen3 x4链路条件下的最大传输速率)[^3]: - 使用更先进的工艺节点制造芯片以降低功耗并增加可用资源数量; - 对内部数据路径进行全面流水线改造,消除潜在瓶颈; - 增强错误检测与纠正能力(ECM), 提升可靠性的同时也间接促进了整体表现改善。 #### 硬件选型考量因素 当选择合适的FPGA型号时应考虑以下几个关键要素: - 是否内置强大的MCU/CPU单元以便简化软件开发流程; - 支持高速串行通信接口的能力,优先选用具备集成PHY硬核的产品; - 可编程逻辑单元的数量充足用于部署复杂的计算密集型任务. 综上所述,Xilinx Zynq系列产品因其兼具ARM处理器子系统以及丰富的可重构硬件资源而成为理想候选者之[^4]. ```python def fpga_nvme_performance(): theoretical_max_gen3 = 3.938 # GB/s for PCIe Gen3 x4 lanes zcu106_write_speed = 2.3 # GB/s achieved on ZCU106 platform with custom design zcu106_read_speed = 2.5 # GB/s improvement_potential = ((theoretical_max_gen3 - max(zcu106_write_speed,zcu106_read_speed)) / min(zcu106_write_speed,zcu106_read_speed))*100 return {"Theoretical Max Speed":theoretical_max_gen3,"Current Write Speed(ZCU106)":zcu106_write_speed, "Current Read Speed(ZCU106)":zcu106_read_speed,"% Improvement Potential":improvement_potential} fpga_perf_metrics=fpga_nvme_performance() print(f"FPGA Performance Metrics:\n{fpga_perf_metrics}") ```
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值