RANSAC算法及应用。。

转自:http://blog.csdn.net/xufuyuan/article/details/7106040

本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文。
    RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。该算法最早由Fischler和Bolles于1981年提出。
    RANSAC的基本假设是:
(1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释;
(2)“局外点”是不能适应该模型的数据;
(3)除此之外的数据属于噪声。
    局外点产生的原因有:噪声的极值;错误的测量方法;对数据的错误假设。
    RANSAC也做了以下假设:给定一组(通常很小的)局内点,存在一个可以估计模型参数的过程;而该模型能够解释或者适用于局内点。

本文内容
1 示例
2 概述
3 算法
4 参数
5 优点与缺点
6 应用
7 参考文献
8 外部链接

一、示例
    一个简单的例子是从一组观测数据中找出合适的2维直线。假设观测数据中包含局内点和局外点,其中局内点近似的被直线所通过,而局外点远离于直线。简单的最小二乘法不能找到适应于局内点的直线,原因是最小二乘法尽量去适应包括局外点在内的所有点。相反,RANSAC能得出一个仅仅用局内点计算出模型,并且概率还足够高。但是,RANSAC并不能保证结果一定正确,为了保证算法有足够高的合理概率,我们必须小心的选择算法的参数。

左图:包含很多局外点的数据集       右图:RANSAC找到的直线(局外点并不影响结果)


二、概述
    RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。
    RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:
    1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
    2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
    3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
    4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
    5.最后,通过估计局内点与模型的错误率来评估模型。
    这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。


三、算法
    伪码形式的算法如下所示:
输入:
data —— 一组观测数据
model —— 适应于数据的模型
n —— 适用于模型的最少数据个数
k —— 算法的迭代次数
t —— 用于决定数据是否适应于模型的阀值
d —— 判定模型是否适用于数据集的数据数目
输出:
best_model —— 跟数据最匹配的模型参数(如果没有找到好的模型,返回null)
best_consensus_set —— 估计出模型的数据点
best_error —— 跟数据相关的估计出的模型错误

iterations = 0
best_model = null
best_consensus_set = null
best_error = 无穷大
while ( iterations < k )
    maybe_inliers = 从数据集中随机选择n个点
    maybe_model = 适合于maybe_inliers的模型参数
    consensus_set = maybe_inliers

    for ( 每个数据集中不属于maybe_inliers的点 )
        if ( 如果点适合于maybe_model,且错误小于t )
            将点添加到consensus_set
    if ( consensus_set中的元素数目大于d )
        已经找到了好的模型,现在测试该模型到底有多好
        better_model = 适合于consensus_set中所有点的模型参数
        this_error = better_model究竟如何适合这些点的度量
        if ( this_error < best_error )
            我们发现了比以前好的模型,保存该模型直到更好的模型出现
            best_model =  better_model
            best_consensus_set = consensus_set
            best_error =  this_error
    增加迭代次数
返回 best_model, best_consensus_set, best_error

    RANSAC算法的可能变化包括以下几种:
    (1)如果发现了一种足够好的模型(该模型有足够小的错误率),则跳出主循环。这样可能会节约计算额外参数的时间。
    (2)直接从maybe_model计算this_error,而不从consensus_set重新估计模型。这样可能会节约比较两种模型错误的时间,但可能会对噪声更敏感。

四、参数
    我们不得不根据特定的问题和数据集通过实验来确定参数t和d。然而参数k(迭代次数)可以从理论结果推断。当我们从估计模型参数时,用p表示一些迭代过程中从数据集内随机选取出的点均为局内点的概率;此时,结果模型很可能有用,因此p也表征了算法产生有用结果的概率。用w表示每次从数据集中选取一个局内点的概率,如下式所示:
    w = 局内点的数目 / 数据集的数目
    通常情况下,我们事先并不知道w的值,但是可以给出一些鲁棒的值。假设估计模型需要选定n个点,wn是所有n个点均为局内点的概率;1 − wn是n个点中至少有一个点为局外点的概率,此时表明我们从数据集中估计出了一个不好的模型。 (1 − wn)k表示算法永远都不会选择到n个点均为局内点的概率,它和1-p相同。因此,
    1 − p = (1 − wn)k
    我们对上式的两边取对数,得出
    
    值得注意的是,这个结果假设n个点都是独立选择的;也就是说,某个点被选定之后,它可能会被后续的迭代过程重复选定到。这种方法通常都不合理,由此推导出的k值被看作是选取不重复点的上限。例如,要从上图中的数据集寻找适合的直线,RANSAC算法通常在每次迭代时选取2个点,计算通过这两点的直线maybe_model,要求这两点必须唯一。
    为了得到更可信的参数,标准偏差或它的乘积可以被加到k上。k的标准偏差定义为:
    
五、优点与缺点
    RANSAC的优点是它能鲁棒的估计模型参数。例如,它能从包含大量局外点的数据集中估计出高精度的参数。RANSAC的缺点是它计算参数的迭代次数没有上限;如果设置迭代次数的上限,得到的结果可能不是最优的结果,甚至可能得到错误的结果。RANSAC只有一定的概率得到可信的模型,概率与迭代次数成正比。RANSAC的另一个缺点是它要求设置跟问题相关的阀值。
    RANSAC只能从特定的数据集中估计出一个模型,如果存在两个(或多个)模型,RANSAC不能找到别的模型。


六、应用
    RANSAC算法经常用于计算机视觉,例如同时求解相关问题与估计立体摄像机的基础矩阵。


七、参考文献

八、外部链接

九、后话

    本文在翻译的过程中参考了沈乐君的文章《随机抽样一致性算法RANSAC源程序和教程》。Ziv Yaniv已经用C++实现了RANSAC,您可以点击这里下载源程序。

不过,如果时间允许的话,我打算自己动手用C#去实现RANSAC算法,原因有两个:

    (1)熟悉算法的最佳途径是自己去实现它;

    (2)方便使用.net的同志们利用RANSAC。

    感谢您耐心看完我的蹩脚翻译,希望对您有所帮助。

六、优化策略

    ①如果在选取子集S时可以根据某些已知的样本特性等采用特定的选取方案或有约束的随机选取来代替原来的 完全随机选取;

    ②当通过一致集S*计算出模型M*后,可以将P中所有与模型M*的误差小于t的样本加入S*,然后重新计算M*。

 

七、参考

http://www.cnblogs.com/tjulxh/archive/2011/12/31/2308921.html

http://blog.csdn.net/xufuyuan/article/details/7106040



转自:http://grunt1223.iteye.com/blog/961063

给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上。 

生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与b的值都不尽相同。我们希望的是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。 

遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。 



RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: 

  • 有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
  • 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
  • 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
  • 然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。
  • 最后,通过估计局内点与模型的错误率来评估模型。
  • 上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。


整个过程可参考下图: 



关于算法的源代码,Ziv Yaniv曾经写一个不错的C++版本,我在关键处增补了注释: 
C代码   收藏代码
  1. #include <math.h>  
  2. #include "LineParamEstimator.h"  
  3.   
  4. LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {}  
  5. /*****************************************************************************/  
  6. /* 
  7.  * Compute the line parameters  [n_x,n_y,a_x,a_y] 
  8.  * 通过输入的两点来确定所在直线,采用法线向量的方式来表示,以兼容平行或垂直的情况 
  9.  * 其中n_x,n_y为归一化后,与原点构成的法线向量,a_x,a_y为直线上任意一点 
  10.  */  
  11. void LineParamEstimator::estimate(std::vector<Point2D *> &data,   
  12.                                                                     std::vector<double> &parameters)  
  13. {  
  14.     parameters.clear();  
  15.     if(data.size()<2)  
  16.         return;  
  17.     double nx = data[1]->y - data[0]->y;  
  18.     double ny = data[0]->x - data[1]->x;// 原始直线的斜率为K,则法线的斜率为-1/k  
  19.     double norm = sqrt(nx*nx + ny*ny);  
  20.       
  21.     parameters.push_back(nx/norm);  
  22.     parameters.push_back(ny/norm);  
  23.     parameters.push_back(data[0]->x);  
  24.     parameters.push_back(data[0]->y);          
  25. }  
  26. /*****************************************************************************/  
  27. /* 
  28.  * Compute the line parameters  [n_x,n_y,a_x,a_y] 
  29.  * 使用最小二乘法,从输入点中拟合出确定直线模型的所需参量 
  30.  */  
  31. void LineParamEstimator::leastSquaresEstimate(std::vector<Point2D *> &data,   
  32.                                                                                             std::vector<double> &parameters)  
  33. {  
  34.     double meanX, meanY, nx, ny, norm;  
  35.     double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix  
  36.     int i, dataSize = data.size();  
  37.   
  38.     parameters.clear();  
  39.     if(data.size()<2)  
  40.         return;  
  41.   
  42.     meanX = meanY = 0.0;  
  43.     covMat11 = covMat12 = covMat21 = covMat22 = 0;  
  44.     for(i=0; i<dataSize; i++) {  
  45.         meanX +=data[i]->x;  
  46.         meanY +=data[i]->y;  
  47.   
  48.         covMat11    +=data[i]->x * data[i]->x;  
  49.         covMat12    +=data[i]->x * data[i]->y;  
  50.         covMat22    +=data[i]->y * data[i]->y;  
  51.     }  
  52.   
  53.     meanX/=dataSize;  
  54.     meanY/=dataSize;  
  55.   
  56.     covMat11 -= dataSize*meanX*meanX;  
  57.         covMat12 -= dataSize*meanX*meanY;  
  58.     covMat22 -= dataSize*meanY*meanY;  
  59.     covMat21 = covMat12;  
  60.   
  61.     if(covMat11<1e-12) {  
  62.         nx = 1.0;  
  63.             ny = 0.0;  
  64.     }  
  65.     else {      //lamda1 is the largest eigen-value of the covariance matrix   
  66.                //and is used to compute the eigne-vector corresponding to the smallest  
  67.                //eigenvalue, which isn't computed explicitly.  
  68.         double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0;  
  69.         nx = -covMat12;  
  70.         ny = lamda1 - covMat22;  
  71.         norm = sqrt(nx*nx + ny*ny);  
  72.         nx/=norm;  
  73.         ny/=norm;  
  74.     }  
  75.     parameters.push_back(nx);  
  76.     parameters.push_back(ny);  
  77.     parameters.push_back(meanX);  
  78.     parameters.push_back(meanY);  
  79. }  
  80. /*****************************************************************************/  
  81. /* 
  82.  * Given the line parameters  [n_x,n_y,a_x,a_y] check if 
  83.  * [n_x, n_y] dot [data.x-a_x, data.y-a_y] < m_delta 
  84.  * 通过与已知法线的点乘结果,确定待测点与已知直线的匹配程度;结果越小则越符合,为 
  85.  * 零则表明点在直线上 
  86.  */  
  87. bool LineParamEstimator::agree(std::vector<double> &parameters, Point2D &data)  
  88. {  
  89.     double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]);   
  90.     return ((signedDistance*signedDistance) < m_deltaSquared);  
  91. }  


RANSAC寻找匹配的代码如下: 
C代码   收藏代码
  1. /*****************************************************************************/  
  2. template<class T, class S>  
  3. double Ransac<T,S>::compute(std::vector<S> &parameters,   
  4.                                                       ParameterEsitmator<T,S> *paramEstimator ,   
  5.                                                     std::vector<T> &data,   
  6.                                                     int numForEstimate)  
  7. {  
  8.     std::vector<T *> leastSquaresEstimateData;  
  9.     int numDataObjects = data.size();  
  10.     int numVotesForBest = -1;  
  11.     int *arr = new int[numForEstimate];// numForEstimate表示拟合模型所需要的最少点数,对本例的直线来说,该值为2  
  12.     short *curVotes = new short[numDataObjects];  //one if data[i] agrees with the current model, otherwise zero  
  13.     short *bestVotes = new short[numDataObjects];  //one if data[i] agrees with the best model, otherwise zero  
  14.       
  15.   
  16.               //there are less data objects than the minimum required for an exact fit  
  17.     if(numDataObjects < numForEstimate)   
  18.         return 0;  
  19.         // 计算所有可能的直线,寻找其中误差最小的解。对于100点的直线拟合来说,大约需要100*99*0.5=4950次运算,复杂度无疑是庞大的。一般采用随机选取子集的方式。  
  20.     computeAllChoices(paramEstimator,data,numForEstimate,  
  21.                                         bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr);  
  22.   
  23.        //compute the least squares estimate using the largest sub set  
  24.     for(int j=0; j<numDataObjects; j++) {  
  25.         if(bestVotes[j])  
  26.             leastSquaresEstimateData.push_back(&(data[j]));  
  27.     }  
  28.         // 对局内点再次用最小二乘法拟合出模型  
  29.     paramEstimator->leastSquaresEstimate(leastSquaresEstimateData,parameters);  
  30.   
  31.     delete [] arr;  
  32.     delete [] bestVotes;  
  33.     delete [] curVotes;   
  34.   
  35.     return (double)leastSquaresEstimateData.size()/(double)numDataObjects;  
  36. }  


在模型确定以及最大迭代次数允许的情况下,RANSAC总是能找到最优解。经过我的实验,对于包含80%误差的数据集,RANSAC的效果远优于直接的最小二乘法。 

RANSAC可以用于哪些场景呢?最著名的莫过于图片的拼接技术。优于镜头的限制,往往需要多张照片才能拍下那种巨幅的风景。在多幅图像合成时,事先会在待合成的图片中提取一些关键的特征点。计算机视觉的研究表明,不同视角下物体往往可以通过一个透视矩(3X3或2X2)阵的变换而得到。RANSAC被用于拟合这个模型的参数(矩阵各行列的值),由此便可识别出不同照片中的同一物体。可参考下图: 



 



另外,RANSAC还可以用于图像搜索时的纠错与物体识别定位。下图中,有几条直线是SIFT匹配算法的误判,RANSAC有效地将其识别,并将正确的模型(书本)用线框标注出来: 

 



  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值