随机抽样一致性算法(RANSAC)

RANSAC(随机抽样一致性)算法是一种处理带有外点数据的迭代方法,用于拟合参数模型。其核心是通过随机选取子集进行模型拟合,并判断剩余数据的符合程度。在达到一定概率阈值时,找到最佳模型。本文介绍了RANSAC的迭代步骤、最小迭代次数的计算,并以直线拟合为例展示了算法过程。
摘要由CSDN通过智能技术生成

RANSAC概念

RANSAC(Random sample consensus)指随机抽样一致性算法
RANSAC是一种对带有外点的数据拟合参数模型的迭代方法

RANSAC的迭代步骤

RANSAC基础版本的每次迭代包括5个步骤:

1.在原始数据中随机选取一个(最小)子集作为假设内点;
2.根据假设的内点拟合一个模型;
3.判断剩余的原始数据是否符合拟合的模型,将其分为内点和外点。如果内点过少则标记为无效迭代;
4.根据假设的内点和上一步划分的内点重新拟合模型;
5.计算所有内点的残差,根据残差和或者错误率重新评估模型。

迭代以上步骤,把具有最小残差和的或是最多内点数的模型作为最佳模型。

最小迭代次数的计算

RANSAC是一种概率算法,想要效果足够好,就要内点选的越多,外点排除越多。也就是需要进行很多次迭代试验。那么我在给定条件下,最少需要试验的次数时多少呢?
这就引出了一个数学问题:

问题
w w w 为给定某个点,它是内点的概率;
p p p 是经过 k k k 次迭代后,选择的点都是内点的概率(只要迭代过程中,有一次迭代全是内点,它就是成功的);
n n n 是当前数据得到的内点总个数;
给定了上面的条件,则对应一个 p p p k k k 也就确定了,求 p p p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值