线性代数(2)几何角度来理解线性方程组

我们从几何角度来理解线性方程组,通过具体的例子和图形展示方程的解的几何意义。线性方程组的解可以对应为 直线的交点、平面的交线 或 更高维的超平面交集。下面通过实例和图形逐步说明。

一、二元一次方程组(二维平面)
示例 1:唯一解(两直线相交)

 

y
|
3 +        L1: y = -x + 3
  |       /
  |      /
  |     /
1 +----• (2,1) 
  |   / 
  |  / L2: y = x - 1
-1+ /
   +------------------ x

 

几何解释:

两条直线斜率相同(-1),但截距不同(2 和 4)。

它们是 平行直线,没有交点,故方程组 无解。

图形表示:

y
|
4 +        L2: y = -x + 4
  |       /
  |      /
2 +     / L1: y = -x + 2
  |    /
  |   /
  |  /
   +------------------ x

示例 3:无穷多解(两直线重合)

图形表示

 

y
|
4 +        L1, L2: y = -2x + 4
  |       /
  |      /
  |     /
  |    /
  |   /
  |  /
   +------------------ x

二、三元一次方程组(三维空间)
示例 4:唯一解(三个平面交于一点)
 

 

 

 

 总结:几何意义
方程组类型    几何解释    解的个数
唯一解    直线/平面交于一点    1
无解    直线/平面平行或矛盾    0
无穷多解    直线/平面重合或交于一条线    ∞
最小二乘解(超定)    无交点,但找到最近近似解    最优近似解
通过几何视角,可以直观理解线性方程组的解是否存在、唯一或有无穷多解!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值