我们从几何角度来理解线性方程组,通过具体的例子和图形展示方程的解的几何意义。线性方程组的解可以对应为 直线的交点、平面的交线 或 更高维的超平面交集。下面通过实例和图形逐步说明。
一、二元一次方程组(二维平面)
示例 1:唯一解(两直线相交)
y
|
3 + L1: y = -x + 3
| /
| /
| /
1 +----• (2,1)
| /
| / L2: y = x - 1
-1+ /
+------------------ x
几何解释:
两条直线斜率相同(-1),但截距不同(2 和 4)。
它们是 平行直线,没有交点,故方程组 无解。
图形表示:
y
|
4 + L2: y = -x + 4
| /
| /
2 + / L1: y = -x + 2
| /
| /
| /
+------------------ x
示例 3:无穷多解(两直线重合)
图形表示
y
|
4 + L1, L2: y = -2x + 4
| /
| /
| /
| /
| /
| /
+------------------ x
二、三元一次方程组(三维空间)
示例 4:唯一解(三个平面交于一点)
总结:几何意义
方程组类型 几何解释 解的个数
唯一解 直线/平面交于一点 1
无解 直线/平面平行或矛盾 0
无穷多解 直线/平面重合或交于一条线 ∞
最小二乘解(超定) 无交点,但找到最近近似解 最优近似解
通过几何视角,可以直观理解线性方程组的解是否存在、唯一或有无穷多解!