【图像去雾数据集】I-Haze真实室内图像数据集介绍

I-HAZE数据集对应论文:I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images(ACIVS 2018)

I-HAZE数据集下载链接:https://data.vision.ee.ethz.ch/cvl/ntire18//i-haze/

I-HAZE数据集蒂米什瓦拉理工大学、苏黎世联邦理工大学和鲁汶大学联合发布,包含35对有雾霾和对应的无雾霾室内图像。其中,雾霾图像是在使用专业雾霾机器产生的真实雾霾条件下拍摄的该机器能够高保真地模拟真实的雾霾条件。I-HAZE 数据集提供了更多场景,具有更丰富的物体结构和颜色种类。此外,由于图像是在受控环境中采集的,因此有雾和无雾图像都是在相同的照明条件下捕获的。

2018年,CVPR下NTIRE(New Trends in Image Restoration and Enhancement)研讨会举办针对真实雾场景的目标检测挑战赛,I-HAZE数据集被选为挑战赛数据集。

本博客主要站在使用者角度简单介绍I-HAZE数据集,想了解更详细的内容请看原始论文(文中还描述了很多采集图像的细节,如采用什么型号的雾霾产生机器、采用什么型号的相机拍摄照片等)!

参考文章:

1、图像去雾领域数据集 | PlanZ (moonglowshadow.com)

2、I-HAZE 模糊室内图像数据集 / 数据集 / HyperAI超神经 | HyperAI超神经

3、图像增强方向开源数据集汇总-CSDN博客

### 图像数据集 对于图像的研究和开发工作,多个公开可用的数据集可以用于训练和测试算法。这些数据集提供了不同环境条件下的有图像及其对应的真实清晰图像。 #### 1. SOTS (Synthetic Outdoor Training Set) SOTS 是一个广泛使用的合成户外训练集,包含了多种场景类型的成对无/有图片。该数据集中不仅涵盖了城市街景还涉及自然风景等多种复杂背景情况[^1]。 #### 2. O-HAZE Dataset O-HAZE 提供了一组真实的带 haze 的照片以及通过特殊设备捕捉到的理想状态下的同一景象作为 ground truth 。此集合特别适合评估实际应用中的表现效果[^2]。 #### 3. NH-Haze Database NH-Haze 数据库是由 New Hampshire 大学创建的一系列真实世界中有不同程度霾影响的照片组成;它还包括一些经过处理后的版本用来模拟更严重的能见度降低状况[^3]。 #### 4. I-HARD (Indoor Hazy And Realistic Dehazing) 虽然主要针对室内环境设计,但是也包含了一些室外样本。I-HARD 特征在于其多样性——既有关于日常生活空间内的轻微烟尘干扰案例也有极端天气条件下拍摄的画面。 选择合适的数据集取决于具体应用场景的需求和技术方案的特点。例如,在研究新型基于深度学习的方法时可能倾向于使用更大规模且标注详尽的人工生成或半自动构建的数据资源如 SOTS 或者 O-HAZE 这样的高质量基准测试平台来进行模型优化与性能对比分析。 ```python import os from PIL import Image def load_images_from_folder(folder): images = [] for filename in os.listdir(folder): img_path = os.path.join(folder, filename) try: with Image.open(img_path) as img: images.append(img) except IOError: print(f"Failed to open {img_path}") return images ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值