pandas数据分析给力教程【完整版】(三)

Pandas处理丢失数据

上一篇:pandas数据分析给力教程【完整版】(二)
下一篇:pandas数据分析给力教程【完整版】(四)

有两种丢失数据:

  • None
  • np.nan(NaN)

1. None

None是Python自带的,其类型为python object。因此,None不能参与到任何计算中。

object类型的运算要比int类型的运算慢得多
计算不同数据类型求和时间
%timeit np.arange(1e5,dtype=xxx).sum()

2. np.nan(NaN)

np.nan是浮点类型,能参与到计算中。但计算的结果总是NaN。

但可以使用np.nan*()函数来计算nan,此时视nan为0。


3. pandas中的None与NaN

1) pandas中None与np.nan都视作np.nan

创建DataFrame

使用DataFrame行索引与列索引修改DataFrame数据


2) pandas中None与np.nan的操作

  • isnull()
  • notnull()
  • dropna(): 过滤丢失数据
  • fillna(): 填充丢失数据

(1)判断函数

  • isnull()
  • notnull()

(2) 过滤函数

  • dropna()

可以选择过滤的是行还是列(默认为行)

也可以选择过滤的方式 how = ‘all’

(3) 填充函数 Series/DataFrame

  • fillna()

可以选择前向填充还是后向填充

对于DataFrame来说,还要选择填充的轴axis。记住,对于DataFrame来说:

  • axis=0:index/行
  • axis=1:columns/列

============================================

练习7:

  1. 简述None与NaN的区别

  2. 假设张三李四参加模拟考试,但张三因为突然想明白人生放弃了英语考试,因此记为None,请据此创建一个DataFrame,命名为ddd3

  3. 老师决定根据用数学的分数填充张三的英语成绩,如何实现?
    用李四的英语成绩填充张三的英语成绩?

============================================

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值