定义
lim t → + ∞ x ( t ) = lim s → 0 s X ( s ) \lim\limits_{t\to+\infty}x(t)=\lim\limits_{s\to0}sX(s) t→+∞limx(t)=s→0limsX(s)
条件
x ( t ) x(t) x(t)的极限存在
用途
一般用来求系统的稳态误差
例子
假设系统传递函数为 G ( s ) = 1 a s + 1 G(s)=\frac{1}{as+1} G(s)=as+11,该系统用比例控制器控制,比例控制器增益为 K p K_p Kp,该系统的参考值为 R ( s ) R(s) R(s),输出值为 X ( s ) X(s) X(s),则有以下关系式
K p ( R ( s ) − X ( s ) ) 1 a s + 1 = X ( s ) K_p(R(s)-X(s))\frac{1}{as+1}=X(s) Kp(R(s)−X(s))as+11=X(s)
化简得
X ( s ) = K p R ( s ) a s + 1 + K p X(s)=\frac{K_pR(s)}{as+1+K_p} X(s)=as+1+KpKpR(s)
若参考值为阶跃信号, R ( s ) = r s R(s)=\frac{r}{s} R(s)=sr ,由终值定理可得,系统在时域里最终的输出 x ( t ) x(t) x(t)为
lim t → + ∞ x ( t ) = lim s → 0 s X ( s ) = lim s → 0 s K p r s a s + 1 + K p = K p 1 + K p r \lim\limits_{t\to+\infty}x(t)=\lim\limits_{s\to0}sX(s)=\lim\limits_{s\to0}s\frac{K_p\frac{r}{s}}{as+1+K_p}=\frac{K_p}{1+K_p}r t→+∞limx(t)=s→0limsX(s)=s→0limsas+1+KpKpsr=1+KpKpr
最后的稳态误差为
e s s = r − K p 1 + K p r = 1 1 + K p r e_{ss}=r-\frac{K_p}{1+K_p}r=\frac{1}{1+K_p}r ess=r−1+KpKpr=1+Kp1r