终值定理与稳态误差

定义

lim ⁡ t → + ∞ x ( t ) = lim ⁡ s → 0 s X ( s ) \lim\limits_{t\to+\infty}x(t)=\lim\limits_{s\to0}sX(s) t+limx(t)=s0limsX(s)

条件

x ( t ) x(t) x(t)的极限存在

用途

一般用来求系统的稳态误差

例子

假设系统传递函数为 G ( s ) = 1 a s + 1 G(s)=\frac{1}{as+1} G(s)=as+11,该系统用比例控制器控制,比例控制器增益为 K p K_p Kp,该系统的参考值为 R ( s ) R(s) R(s),输出值为 X ( s ) X(s) X(s),则有以下关系式

K p ( R ( s ) − X ( s ) ) 1 a s + 1 = X ( s ) K_p(R(s)-X(s))\frac{1}{as+1}=X(s) Kp(R(s)X(s))as+11=X(s)

化简得

X ( s ) = K p R ( s ) a s + 1 + K p X(s)=\frac{K_pR(s)}{as+1+K_p} X(s)=as+1+KpKpR(s)

若参考值为阶跃信号, R ( s ) = r s R(s)=\frac{r}{s} R(s)=sr ,由终值定理可得,系统在时域里最终的输出 x ( t ) x(t) x(t)

lim ⁡ t → + ∞ x ( t ) = lim ⁡ s → 0 s X ( s ) = lim ⁡ s → 0 s K p r s a s + 1 + K p = K p 1 + K p r \lim\limits_{t\to+\infty}x(t)=\lim\limits_{s\to0}sX(s)=\lim\limits_{s\to0}s\frac{K_p\frac{r}{s}}{as+1+K_p}=\frac{K_p}{1+K_p}r t+limx(t)=s0limsX(s)=s0limsas+1+KpKpsr=1+KpKpr

最后的稳态误差为

e s s = r − K p 1 + K p r = 1 1 + K p r e_{ss}=r-\frac{K_p}{1+K_p}r=\frac{1}{1+K_p}r ess=r1+KpKpr=1+Kp1r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值