4.防止过拟合,使用dropout, 并增加隐藏层

本文介绍了过拟合现象,特别是在线性问题和分类问题中的表现。为了解决过拟合,提出了三种方法:增加数据集、正则化和Dropout技术。正则化通过代价函数中的正则项来避免复杂模型。Dropout是一种神经元随机失活的策略,虽然会减慢收敛速度,但能有效防止过拟合,尤其在训练数据有限或模型复杂时效果显著。
摘要由CSDN通过智能技术生成

过拟合的了解:线性问题中的过拟合,分类问题的中过拟合

防止过拟合: 1.增加数据集,2.正则化方法 3.Dropout

正则化:就是在代价函数后增加正则项

代价函数后增加正则项

Dropout:神经元的随机失活


tensorflow中屏蔽输出的log信息方法
TF_CPP_MIN_LOG_LEVEL 取值 00也是默认值,输出所有信息
TF_CPP_MIN_LOG_LEVEL 取值 1 : 屏蔽通知信息
TF_CPP_MIN_LOG_LEVEL 取值 2 : 屏蔽通知信息和警告信息
TF_CPP_MIN_LOG_LEVEL 取值 3 : 屏蔽通知信息、警告信息和报错信息

import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
batch_size = 100 
n_batch = mnist.train.num_examples // batch_size

x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值