过拟合的了解:线性问题中的过拟合,分类问题的中过拟合
防止过拟合: 1.增加数据集,2.正则化方法 3.Dropout
正则化:就是在代价函数后增加正则项
Dropout:神经元的随机失活
tensorflow中屏蔽输出的log信息方法
TF_CPP_MIN_LOG_LEVEL 取值 0 : 0也是默认值,输出所有信息
TF_CPP_MIN_LOG_LEVEL 取值 1 : 屏蔽通知信息
TF_CPP_MIN_LOG_LEVEL 取值 2 : 屏蔽通知信息和警告信息
TF_CPP_MIN_LOG_LEVEL 取值 3 : 屏蔽通知信息、警告信息和报错信息
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None