9点EXCEL计算公式

这篇博客详细介绍了如何使用EXCEL进行平面度计算,通过两次坐标转换,以A1点和C3点(对角线点)为基准,求得旋转量P和Q,计算MAX-MIN得到平面度误差。提供了行输入和列输入两种数据输入方式,方便用户操作。附带了相关EXCEL文件的下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9点平面度EXCEL计算公式-对角线法


文末链接
本公式采用9点对角线法,计算平面度误差,
如图所示平均分布采样9点,X方向与Y方向采点间距可以不相同
在这里插入图片描述

自动计算出平面度

公式详解
第一次坐标转换
以A1点为0点
在这里插入图片描述
这里再以C3点(对角线点)为0点做一次旋转,求得旋转量P和Q
得到第二次坐标转换
在这里插入图片描述

其中计算MAX-MIN即为平面度误差

为方便,本EXCEL提供了行输入和列输入2种输入数据方式
在这里插入图片描述

链接如下:
链接:https://pan.baidu.com/s/1jUNWDId5Asm62lEB46xPtg 密码:xgyq

9标定是一种计算机视觉技术,用于估计相机内部参数(如焦距、主坐标等)以及场景中的相对位置。这个过程通常涉及到最少三视图的对应对,但在实践中,为了提高精和鲁棒性,常采用9个或更多的特征计算矩阵关系主要是基于像素坐标的匹配和卡尔曼滤波等算法,形成基本相机矩阵(Bundler-Samplers 方法)、本质矩阵、或五条件下的旋转和平移矩阵。在C#中实现这一部分,可以使用Math.NET Numerics这样的数学库来进行矩阵运算,SharpCV或者AForge.NET这类开源计算机视觉库提供图像处理功能。 以下是使用C#简单概述的一个步骤: 1. 导入必要的库: ```csharp using MathNet.Numerics.LinearAlgebra; using AForge.Video; ``` 2. 获取9个关键及其对应的像素坐标: ```csharp List<Point2f> keyPointsImage1 = ...; // 图像1的关键 List<Point2f> keyPointsImage2 = ...; // 图像2的关键 // 接下来需要进行匹配并得到对应关系 ``` 3. 构建相关矩阵(例如8x9矩阵),其中前8列代表关键对,第9列表示单个: ```csharp Matrix<double> pointPairsMat = Matrix<double>.Build.DenseOfRows(keyPointPairs); ``` 4. 使用SVD分解求解相机参数矩阵: ```csharp var svd = Svd.Decompose(pointPairsMat.Transpose() * pointPairsMat); // 解出相机参数 var cameraParams = svd.Vt[0].ToColumnMajor(); ``` 请注意,这只是一个非常基础的示例,实际过程中还需要考虑噪声处理、异常值检测、匹配质量检查等因素,并可能需要结合其他算法优化。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值