Evaluating Student Writing

最近参加了一个ner序列标注比赛Evaluating Student Writing,感觉自己已经很难上分了,也学到了一些知识,在这里做个总结
比赛的大意是对于一波学生的文章进行序列标注,标注的标签有Claim,Evidence,Lead几种标签,对于一篇文章中的预测示例如下:

id,class,predictionstring
1,Claim,1 2
1,Claim,6 7 8

这里predictionstring的结果是以空格切分出来的单词,比如I love you中I就是1,love就是2,这里值得学习的内容如下:

pytorch中的softmax和crossentropy不能混用

这是在做这一道题目之中遇到的比较重大的bug,因为在pytorch之中的crossentropy自带softmax激活函数,所以网络层的定义只能为

class ClassificationModel(nn.Module):
    def __init__(self,model,config,n_labels):
        super(ClassificationModel,self).__init__()
        self.model = model
        self.fc = nn.Linear(config.embedding_size,15)
        
    def forward(self,input_ids,attention_mask):
        #mask_ids = torch.not_equal(input_ids,1)
        #英文roberta padding=1
        output = self.model(input_ids,attention_mask=attention_mask)
        output = self.fc(output)
        return output

损失函数定义为

def compute_multilabel_loss(model,batch_token_ids,batch_attention_mask,batch_label):
    #print('compute_multilabel_loss')
    logit = model(input_ids=batch_token_ids,attention_mask=batch_attention_mask)
    #loss_fn = torch.nn.CrossEntropyLoss(reduce=True, size_average=True)
    #使用CrossEntropyLoss()时网络层不需要加上激活函数softmax
    loss_fn = torch.nn.CrossEntropyLoss(reduce=True,size_average=True)
    logit = logit.view(logit.size()[0]*logit.size()[1],-1)
    batch_label = batch_label.view(batch_label.size()[0]*batch_label.size()[1],-1)
    batch_label = batch_label.squeeze()
    mseloss = loss_fn(logit,batch_label)
    if 12 in batch_label:
        mseloss = mseloss*1.2
    #增加一波标签为12和13的内容
    return mseloss

模型训练的epoch

对于模型训练的结束位置,可以等到效果反超的时候退出,而不是等到训练完若干个epoch再退出。

if bestpoint < point:
    bestpoint = point
    print('bestpoint = %s'%(str(bestpoint)))
    torch.save(model,'best_point='+str(bestpoint)+'_current_split='+str(current_split)+'.pth')
    best_point_result[current_split] = bestpoint
else:
    break

对于单词的划分

这里对于单词的划分使用的是字符划分的方式

for id_num in tqdm(range(len(IDS))):
    #if id_num%100==0: print(id_num,', ',end='')
        
    # READ TRAIN TEXT, TOKENIZE, AND SAVE IN TOKEN ARRAYS    
    n = IDS[id_num]
    name = f'/home/xiaoguzai/数据/Evaluate student writing/train/{n}.txt'
    txt = open(name, 'r').read()
    train_lens.append(len(txt.split()))
    tokens = tokenizer.encode_plus(txt, max_length=MAX_LEN, padding='max_length',
                                   truncation=True, return_offsets_mapping=True)
    train_tokens[id_num,] = tokens['input_ids']
    train_attention[id_num,] = tokens['attention_mask']
    # FIND TARGETS IN TEXT AND SAVE IN TARGET ARRAYS
    offsets = tokens['offset_mapping']
    #读取文件名称并切分,获取tokens['input_ids'],
    #tokens['attention_mask']以及tokens['offset_mapping']内容
    train_offset.append(offsets)
    train_text.append(txt)
    offset_index = 0
    df_current = df.loc[df.id==n]
    for index,row in df_current.iterrows():
    #!!!这里有bug!!!应该为df_current.iterrows,而不是df.iterrows
        a = row.discourse_start
        b = row.discourse_end
        #discourse_start为开始的字母,从第8个字母开始,discourse_end为结束的字母,从第229个字母开始
        #这个if要放在循环外面,节约运行时间
        #这里的a记录的是每一项开始的字符,b记录的是每一项结束的字符
        c = offsets[offset_index][0]
        d = offsets[offset_index][1]
        #切分出来带空格的第几个字母,!!!利用了offsets也是一个列表,列表之中记录了单词的开始的字母和结束的字母
        beginning = True
        while b>c:
            if (a<=c)&(d<=b):
                k = target_map[row.discourse_type]            
                r"""
                这里a,b,c,d实际上的大小关系
                (a           ,         b)
                (c<---------c,d------->d)
                (c,d)包含在(a,b)之中,证明这个字母所在的单词为这个标签的内容
                c,d为字母编号,id_num为划分的id编号(单词编号)
                !!!如果当前字母的起始和终止位置包含在总起始和终止位置之中
                """
                #“Lead","Position","Evidence","Claim","Concluding Statement",
                if beginning:
                    targets_b[k][id_num][offset_index] = 1
                    beginning = False
                else:
                    targets_i[k][id_num][offset_index] = 1
                #如果对应字母在这个(a,d)的范围之中,标记当前分类类别
                #这里不需要offset_index+1,因为起始为(0,0)代表打头的标记了
                #标记当前的单词即可
                #offset_index代表着当前的单词
            offset_index += 1
            if offset_index>len(offsets)-1:
                break
            c = offsets[offset_index][0]
            d = offsets[offset_index][1]
            #k是分类,id_num为对应的id,offset_index为对应的predictstring

可以看出,在训练的时候,利用当前字符的内容去标记当前单词的内容(longformer与roberta切词方法一样,都是按照空格一个一个切单词),如果当前单词在字符范围之内,则标记该单词

容易出现bug的地方:序列标注需要去除掉开头和结尾的位置

在序列标注的过程中,训练的时候需要加上开头的标志,预测完之后要去除掉开头的标志,否则容易发生错位现象

 for index1 in range(batch_size):
     current_pred = [number_map_target[int(data)] for data in output_idx[index1]]
     pred_df.append({'id':batch_ids[index1],\
                     'input_ids':batch_token[index1][1:],\
                     'text':batch_text[index1],\
                     'offset_mapping':batch_offset[index1][1:],\
                     'preds':current_pred[1:],\
                     'pred_scores':output_pred[index1][1:]})

设定界限以及连续的次数

for batch_ids,batch_token,batch_text,batch_offset,batch_attention_mask,batch_label in tqdm(valid_loader):
    batch_token = batch_token.to(device)
    batch_attention_mask = batch_attention_mask.to(device)
    batch_label = batch_label.to(device)
    with torch.no_grad():
        output = model(batch_token,attention_mask=batch_attention_mask)
        #output_label = np.argmax(output,axis=-1)
        output = torch.softmax(output,axis=-1)
        output_pred, output_idx = output.max(-1)
        batch_size = output.size()[0]
        r"""
        number_map_target = {0:'B-Lead',1:'I-Lead',2:'B-Position',3:'I-Position',4:'B-Evidence',5:'I-Evidence',\
             6:'B-Claim',7:'I-Claim',8:'B-Concluding Statement',9:'I-Concluding Statement',\
             10:'B-Counterclaim',11:'I-Counterclaim',12:'B-Rebuttal',13:'I-Rebuttal',14:'O'}
        """
        for index1 in range(batch_size):
            current_pred = [number_map_target[int(data)] for data in output_idx[index1]]
            pred_df.append({'id':batch_ids[index1],\
                            'input_ids':batch_token[index1][1:],\
                            'text':batch_text[index1],\
                            'offset_mapping':batch_offset[index1][1:],\
                            'preds':current_pred[1:],\
                            'pred_scores':output_pred[index1][1:]})
            #预测出来的结果去掉开头的[cls]标志,容易出现bug的地方:text不需要去除第一位的字母
            #其他的像offset_mapping,preds,pred_scores等可以
            #batch_ids不能带[1:],为文章的id
pred_df = change_id_to_predictstring(pred_df)

这里的设定界限非常的关键,预测出结果的转化方式与之前将输入的内容转为单词的转化方式有所不同,这里我们查看change_id_to_predictstring函数

def change_id_to_predictstring(test_samples):
    temp_df = []
    for sample_idx, sample in enumerate(test_samples):
        preds = sample["preds"]
        offset_mapping = sample["offset_mapping"]
        sample_id = sample["id"]
        sample_text = sample["text"]
        sample_input_ids = sample["input_ids"]
        sample_pred_scores = sample["pred_scores"]
        sample_preds = []
        if len(preds) < len(offset_mapping):
            #没有出现过这种情况
            preds = preds + ["O"] * (len(offset_mapping) - len(preds))
            sample_pred_scores = sample_pred_scores + [0] * (len(offset_mapping) - len(sample_pred_scores))
            #这里没看到下面有用到O来填充的
        idx = 0
        phrase_preds = []
        while idx < len(offset_mapping):
            start, end = offset_mapping[idx]
            if preds[idx] != "O":
                label = preds[idx][2:]
            else:
                label = "O"
            phrase_scores = []
            phrase_scores.append(sample_pred_scores[idx])
            #这里phrase_scores压入的是刚开始的得分
            #phrase_scores保存每一层概率的得分
            idx += 1
            while idx < len(offset_mapping):
                if label == "O":
                    matching_label = "O"
                else:
                    matching_label = f"I-{label}"
                if preds[idx] == matching_label:
                    _, end = offset_mapping[idx]
                    phrase_scores.append(sample_pred_scores[idx])
                    idx += 1
                else:
                    break
            #取出后面的label与当前label相同的标签内容
            #比如前面的为Lead,这里依次找寻I-Lead(I-Lead均为匹配直到不匹配为止)
            if "end" in locals():
                phrase = sample_text[start:end]
                phrase_preds.append((phrase, start, end, label, phrase_scores))
        for phrase_idx, (phrase, start, end, label, phrase_scores) in enumerate(phrase_preds):
            word_start = len(sample_text[:start].split())
            word_end = word_start + len(sample_text[start:end].split())
            word_end = min(word_end, len(sample_text.split()))
            #这个情况非常的严谨
            ps = " ".join([str(x) for x in range(word_start, word_end)])
            if label != "O":
                if sum(phrase_scores) / len(phrase_scores) >= proba_thresh[label]:
                    #sum phrase_scores = 140.2255,len phrase_scores = 147,proba_thresh[label] = 0.7
                    #求出每一个phrase的平均得分,判断是否大于proba_thresh[label]的得分,
                    if len(ps.split()) >= min_thresh[label]:
                        #平均得分大于proba_thres[label]并且连续单词数量大于min_thresh[label]时放入最终结果中
                        temp_df.append((sample_id, label, ps))
            
            #if label != "O" and ps != "" and len(phrase_scores) > 2:
            #    temp_df.append((sample_id, label, ps))
    #这里调用对于phrase_preds进行进一步处理
    #提交中需要sample_id,label,ps(用空格切分的内容)
    temp_df = pd.DataFrame(temp_df, columns=["id", "class", "predictionstring"])
    temp_df = temp_df.reset_index(drop=True)
    return temp_df

自己的一点想法

这里融合模型的时候可以使用之前kaggle使用的,循环找寻最优的参数进行融合的方法,比如模型1的权重设置为0~0.4,模型2的权重设置为0~0.4,模型3的权重为1-模型1的权重-模型2的权重,然后找寻在验证集上的最高分,这样来设定权重内容

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值