分类器有时会产生错误,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值。
朴素贝叶斯:因为整个形式化过程只做最原始、最简单的假设。
一、基于贝叶斯决策理论的分类方法:
用p1(x,y)表示数据点(x,y)属于类别1的概率
p1(x,y表示数据点(x,y)属于类别0的概率
如果p1(x,y)> p0(x,y) ,那么为类别1
如果p1(x,y)< p0(x,y) ,那么为类别0
即选择高概率类别,这就是贝叶斯决策理论的核心思想
利用贝叶斯准则:
如果p(c1|x,y) > p(c0|x,y) ,那么属于类别1
如果p(c1|x,y) < p(c0|x,y) ,那么属于类别0
二、使用朴素贝叶斯进行文档分类
文档分类中,整个文档是实例,而文档中的某些元素是特征,将文档中出现的每个词的出现或者不出现作为一个特征,这样得到的特征数目就会跟词汇表中的词目一样多。
朴素假设:一个特征或者单词出现的可能性与它和其他单词相邻没有关系。
三、使用Python进行文本分类
从文本中获取特征:来自文本中的词条,将每个文本片段表示为一个词条向量,其中1表示词条在文档中出现过,0表示词条没有在文档中出现过。文档分类1:侮辱性,0:非侮辱性
1.准备数据:从文本中构建词向量
词表向向量的转换函数:
import numpy as np
import random
import feedparser
#构造数据集和分类标签向量
def create_data_set():
posting_list = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'you'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
class_vec = [0,1,0,1,0,1]
return posting_list,class_vec
#将所有文档中出现的词条合成一个总词汇表,用来后面将每个文档向量化的依据,每个词条相当于一个特征
def create_vocab_list(data_set):
vocab_set = set([])
#逐个遍历文档词条向量,去除重复词条,并将该文档中出现的词条加入到总词汇表中
for information in data_set:
vocab_set = vocab_set | set(information)
return list(vocab_set)
#对每一文档词条向量进行转化(0,1)形式,总词汇表中有多少个词汇,该文档向量就有多少特征
def set_per_to_vec(vocab_list,docment_list):
#文档0,1向量长度为总词汇表len长
ret_doc_vec = [0] * len(vocab_list)
#遍历文档词条列表中的每一个元素,如果该词条在词汇表中,则相应位为1,如果不在,则相应值为0
for word in docment_list:
if word in vocab_list:
# #词集模型:只描述该词条是否出现在文档中,所以向量中的值不是0就是1
# ret_doc_vec[vocab_list.index(word)] = 1
#词袋模型:与词集不同的是不仅表述是否出现
# 而且描述在出现的情况下,该词条在文档中的出现次数,所以向量中的值不止是0和1
ret_doc_vec[vocab_list.index(word)] += 1