N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000) 第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
Input示例
6 -2 11 -4 13 -5 -2
Output示例
20
题解:
变成循环了,肯定不能求N遍,n^2 过不了。
想想可以换一个角度,求整个 序列中间最‘小’的区间,
那就两个情况,
一个是最大区间在中间,就是正常的求法,
一个是最大区间在首位,那就是所有数的和,减去加上中间负值最‘小’的区间。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=51010;
ll a[maxn],b[maxn];
int main(){
int n;
ll sum=0,sum1=0,sum2=0,ans=0;
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%lld",&a[i]);
sum+=a[i];
b[i]=-a[i];
}
ll maxa=0,maxb=0;
for(int i=1;i<=n;++i){
if(sum1<0) sum1=a[i];
else sum1+=a[i];
if(sum2<0) sum2=b[i];
else sum2+=b[i];
if(sum1>maxa) maxa=sum1;
if(sum2>maxb) maxb=sum2;
}
cout<<(maxa>(maxb+sum)?maxa:(sum+maxb))<<endl;
return 0;
}