优化器

torch.optim中实现了深度学习中绝大多数的优化方法,例如RMSProp、Adam、SGD等,更便于使用,因此通常不手动调整

import torch.optim as optim
#新建一个优化器,指定要调整的参数和学习率
optimizer=optim.SGD(net.parameters(),lr=0.01)

#在训练过程中
#先梯度清零(与net.zero_grad()效果一样)
optimizer.zero_grad()

#计算损失
output=net(input)
loss=criterion(output,target)

#反向传播
loss.backward()
#更新参数
optimizer.step()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值