离散傅里叶变换

//--------------------------------------【程序说明】-------------------------------------------
// 程序描述:离散傅里叶变换
// 开发测试所用IDE版本:Visual Studio 2010
// 开发测试所用OpenCV版本: 3.0 beta
//------------------------------------------------------------------------------------------------

//QQ:1746430162

//http://bbs.21ic.com/icview-759778-1-1.html (项目展示链接)

//  本工作室是专业电子类设计开发团队,团队成员全为从事51\DSP\ ARM\fpga类嵌入式开发和图像处理、机器学习等相关算法研究多年的软、硬件开发工程师,已与全国几十家客户成功合作。 可以长期提供技术支持,承接各类相关项目开发与咨询服务。






//---------------------------------【头文件、命名空间包含部分】-----------------------------
// 描述:包含程序所使用的头文件和命名空间
//-------------------------------------------------------------------------------------------------
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
using namespace cv;




//-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
//输出欢迎信息和OpenCV版本
printf("\n\n\t\t\t非常感谢购买《OpenCV3编程入门》一书!\n");
printf("\n\n\t\t\t此为本书OpenCV3版的第28个配套示例程序\n");
printf("\n\n\t\t\t   当前使用的OpenCV版本为:" CV_VERSION );
printf("\n\n  ----------------------------------------------------------------------------\n");
}






//--------------------------------------【main( )函数】-----------------------------------------
//          描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-------------------------------------------------------------------------------------------------
int main( )
{


//【1】以灰度模式读取原始图像并显示
Mat srcImage = imread("1.jpg", 0);
if(!srcImage.data ) { printf("读取图片错误,请确定目录下是否有imread函数指定图片存在~! \n"); return false; } 
imshow("原始图像" , srcImage);   


ShowHelpText();


//【2】将输入图像延扩到最佳的尺寸,边界用0补充
int m = getOptimalDFTSize( srcImage.rows );
int n = getOptimalDFTSize( srcImage.cols ); 
//将添加的像素初始化为0.
Mat padded;  
copyMakeBorder(srcImage, padded, 0, m - srcImage.rows, 0, n - srcImage.cols, BORDER_CONSTANT, Scalar::all(0));


//【3】为傅立叶变换的结果(实部和虚部)分配存储空间。
//将planes数组组合合并成一个多通道的数组complexI
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI);         


//【4】进行就地离散傅里叶变换
dft(complexI, complexI);           


//【5】将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
split(complexI, planes); // 将多通道数组complexI分离成几个单通道数组,planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude  
Mat magnitudeImage = planes[0];


//【6】进行对数尺度(logarithmic scale)缩放
magnitudeImage += Scalar::all(1);
log(magnitudeImage, magnitudeImage);//求自然对数


//【7】剪切和重分布幅度图象限
//若有奇数行或奇数列,进行频谱裁剪      
magnitudeImage = magnitudeImage(Rect(0, 0, magnitudeImage.cols & -2, magnitudeImage.rows & -2));
//重新排列傅立叶图像中的象限,使得原点位于图像中心  
int cx = magnitudeImage.cols/2;
int cy = magnitudeImage.rows/2;
Mat q0(magnitudeImage, Rect(0, 0, cx, cy));   // ROI区域的左上
Mat q1(magnitudeImage, Rect(cx, 0, cx, cy));  // ROI区域的右上
Mat q2(magnitudeImage, Rect(0, cy, cx, cy));  // ROI区域的左下
Mat q3(magnitudeImage, Rect(cx, cy, cx, cy)); // ROI区域的右下
//交换象限(左上与右下进行交换)
Mat tmp;                           
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
//交换象限(右上与左下进行交换)
q1.copyTo(tmp);                 
q2.copyTo(q1);
tmp.copyTo(q2);


//【8】归一化,用0到1之间的浮点值将矩阵变换为可视的图像格式
//此句代码的OpenCV2版为:
//normalize(magnitudeImage, magnitudeImage, 0, 1, CV_MINMAX); 
//此句代码的OpenCV3版为:
normalize(magnitudeImage, magnitudeImage, 0, 1, NORM_MINMAX); 


//【9】显示效果图
imshow("频谱幅值", magnitudeImage);    
waitKey();


return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值