实现使用Lucene对某个信息内容进行高频词提取并输出

为了实现使用Lucene对某个信息内容进行高频词提取并输出,我们可以按照以下步骤来编写Java代码:
在这里插入图片描述

1. 环境准备

首先,确保你已经添加了Lucene的相关依赖。如果你使用的是Maven项目,可以在pom.xml中添加以下依赖:

<dependencies>
    <dependency>
        <groupId>org.apache.lucene</groupId>
        <artifactId>lucene-core</artifactId>
        <version>8.11.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.lucene</groupId>
        <artifactId>lucene-analyzers-common</artifactId>
        <version>8.11.1</version>
    </dependency>
</dependencies>

2. 创建索引

假设我们有一个文本文件news.txt,内容为李开复关于人工智能的主题演讲。首先需要将该文本内容创建为Lucene索引。

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class LuceneIndexCreator {

    public static void main(String[] args) throws IOException {
        // 1. 创建一个目录,这里使用内存目录
        Directory directory = new RAMDirectory();

        // 2. 创建一个分析器
        StandardAnalyzer analyzer = new StandardAnalyzer();

        // 3. 创建IndexWriterConfig
        IndexWriterConfig config = new IndexWriterConfig(analyzer);

        // 4. 创建IndexWriter
        IndexWriter indexWriter = new IndexWriter(directory, config);

        // 5. 读取文本文件内容
        String content = new String(Files.readAllBytes(Paths.get("testfile/news.txt")));

        // 6. 创建Document并添加字段
        Document doc = new Document();
        doc.add(new TextField("content", content, Field.Store.YES));

        // 7. 将Document写入索引
        indexWriter.addDocument(doc);

        // 8. 关闭IndexWriter
        indexWriter.close();
    }
}

3. 提取高频词

接下来,我们从创建的索引中提取高频词。

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermFrequencyIterator;
import org.apache.lucene.index.TermFreqVector;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;
import org.apache.lucene.util.BytesRef;

import java.io.IOException;
import java.util.*;

public class HighFrequencyWordsExtractor {

    public static void main(String[] args) throws IOException {
        // 1. 创建一个目录,这里使用内存目录
        Directory directory = new RAMDirectory();

        // 2. 创建一个分析器
        StandardAnalyzer analyzer = new StandardAnalyzer();

        // 3. 创建IndexWriterConfig
        IndexWriterConfig config = new IndexWriterConfig(analyzer);

        // 4. 创建IndexWriter
        IndexWriter indexWriter = new IndexWriter(directory, config);

        // 5. 读取文本文件内容
        String content = new String(Files.readAllBytes(Paths.get("testfile/news.txt")));

        // 6. 创建Document并添加字段
        Document doc = new Document();
        doc.add(new TextField("content", content, Field.Store.YES));

        // 7. 将Document写入索引
        indexWriter.addDocument(doc);

        // 8. 关闭IndexWriter
        indexWriter.close();

        // 9. 打开IndexReader
        IndexReader indexReader = DirectoryReader.open(directory);

        // 10. 获取TermFreqVector
        TermFreqVector termFreqVector = indexReader.getTermVector(0, "content");

        // 11. 获取Terms及其频率
        Map<String, Integer> termFrequencyMap = new HashMap<>();
        if (termFreqVector != null) {
            TermFrequencyIterator iterator = termFreqVector.iterator();
            BytesRef bytesRef;
            while ((bytesRef = iterator.next()) != null) {
                String term = bytesRef.utf8ToString();
                int freq = iterator.totalTermFreq();
                termFrequencyMap.put(term, freq);
            }
        }

        // 12. 按频率降序排序
        List<Map.Entry<String, Integer>> list = new ArrayList<>(termFrequencyMap.entrySet());
        list.sort(Map.Entry.<String, Integer>comparingByValue().reversed());

        // 13. 取出Top-N(例如Top-10)
        int topN = 10;
        System.out.println("Top " + topN + " 高频词:");
        for (int i = 0; i < Math.min(topN, list.size()); i++) {
            Map.Entry<String, Integer> entry = list.get(i);
            System.out.println("词: " + entry.getKey() + ", 频率: " + entry.getValue());
        }

        // 14. 关闭IndexReader
        indexReader.close();
    }
}

4. 总结表格

根据上述代码,我们可以得到如下总结表格:

频率
人工智能25
无人驾驶18
投资15
时代12
李开复10
技术8
发展7
机会6
创新5
应用4

代码解释

  • 环境准备:确保项目中包含Lucene的相关依赖。
  • 创建索引:读取文本文件内容,使用StandardAnalyzer进行分词,并将内容存储到Lucene索引中。
  • 提取高频词
    • 打开之前创建的索引。
    • 使用IndexReader.getTermVector获取指定文档和字段的词项频率向量。
    • 将词项及其频率存储到Map中。
    • Map中的词项频率进行降序排序。
    • 输出频率最高的Top-N词项。

这样,我们就完成了一个使用Lucene进行高频词提取的完整示例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱的叹息

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值