2023HBCPC补题C路径计数

C.路径计数:

有一个 n 个点 n−1 条无向边的树. 每条边的长度可能并不相同。

我们定义 dis(u,v) 为从点 u 到点 v所有边的长度之和.。

你需要求出满足dis(u,v) 为奇数的无序点对 (u,v) 的数量。

输入格式:

第一行为一个整数 n(2≤n≤105),表示树的点数

之后n−1行每行包括三个整数ui​,vi​,wi​(1≤ui​,vi​≤n,ui​=vi​,1≤wi​≤109), 表示一条 连接点ui​ 和点 vi​ 长度为 wi​ 的边 .

输出格式:

一个整数,表示答案。

输入样例 1:

5
1 2 1
1 3 1
2 4 1
2 5 2

输出样例 1:

6

输入样例 2:

10
5 7 1
10 3 1
4 2 5
5 1 7
4 9 10
1 4 5
8 7 6
5 10 5
6 9 4

输出样例 2:

25

样例说明

第一个样例中, 6 条无序点对为 (1,2),(1,3),(1,5),(2,4),(3,4),(4,5) 。

代码长度限制

100 KB

Java (javac)

时间限制

2000 ms

内存限制

256 MB

其他编译器

时间限制

1000 ms

内存限制

256 MB

解决思路:

作为新手小白的zxl实在不擅长写树图,所以直接套用的单源最短路径算法,需要注意的是不能使用循环去遍历每个点(会超时),因为求的是奇数点的个数,所以肯定是奇数+偶数(画图就能看出来),数据范围太大必须开longlong(下次不开小M是狗),废话不多说直接上代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll ans=0;
ll ji=0;
ll d[200010];
vector<pair<ll,ll> > a[200010];
priority_queue<pair<ll,ll> > q;
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n-1;i++){
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		a[x].push_back(make_pair(y,z));
		a[y].push_back(make_pair(x,z));
	}
	memset(d,1000000002,sizeof d);
	int s=1;
	d[s]=0;
	q.push(make_pair(-d[s],s));
	while(q.size()>0){
		pair<int,int> u=q.top();
		q.pop();
		for(int i=0;i<a[u.second].size();i++){
			pair<int,int> e=a[u.second][i];
			if(d[e.first]>d[u.second]+e.second){
				d[e.first]=d[u.second]+e.second;
				if(d[e.first]%2!=0)
				{
					ji++;
				}
				q.push(make_pair(-d[e.first],e.first));
			}
		}
	}
	ans=ji*(n-ji);
	cout<<ans<<endl;
	return 0;
}

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zxl0503

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值