GNN部分原理

***摘要:我们提出了一种对图结构数据进行半监督学习的可扩展方法,该方法是基于直接在图上操作的卷积神经网络的一个有效变体。基于谱图卷积的一阶局部逼近,激励我们的卷积结构的选择。我们的模型线性地缩放图的边数,并学习隐层表示,该表示既编码局部图结构,又编码节点的特征。

***介绍:1、度矩阵与邻接矩阵的概念:

度矩阵D:

度矩阵是对角阵,对角上的元素为各个顶点的度。顶点vi的度表示和该顶点相关联的边的数量。无向图中顶点vi的度d(vi)=N(i)。(环的话,关联两次)
在这里插入图片描述

注意:

有向图中,顶点vi的度分为顶点vi的出度和入度,即从顶点vi出去的有向边的数量和进入顶点vi的有向边的数量。

邻接矩阵A:

邻接矩阵表示顶点间关系,是n阶方阵(n为顶点数量)。

 邻接矩阵分为有向图邻接矩阵和无向图邻接矩阵。无向图邻接矩阵是对称矩阵,而有向图的邻接矩阵不一定对称。

(https://img-blog.csdnimg.cn/20201129134956905.png)

注意,对于有向图,vivj是有方向的,即vi -> vj 。

!!!注意:
在这里插入图片描述
(环的话可能不成立)
计算机生成了可选文字:0000300200and1000110011
2、在这个工作中,我们直接用神经网络模型f(x,A)对图结构进行编码,并对所有有标签的节点在一个有监督的目标L0上进行训练,从而避免了损失函数中基于图的显式正则化。将f(.)条件设置在图的邻接矩阵上,使模型能够从监督损失L0中分配梯度信息,并使其能够学习带标签和不带标签的节点的表示。
为什么抛弃以前的做法?
因为原来的公式依赖于这样的假设,即图中相互连接的节点可能共享相同的标签。但是这个假设可能限制模型的能力,因为图边不一定需要编码节点相似性,但可能包含更多的信息。原来的公式除L0外,存在显式的基于图的正则化项(项例如,图拉布拉斯正则化项),我们的方法就是要避免损失函数中的这一项,同时模型性能更好。
3、我们的贡献是双重。首先,我们引进了一个简单且行为良好的神经网络模型的分层传播规则,这些模型直接在图上工作,并且展示了它如何从谱图卷积的一阶逼近从发。第二,我们证明了这种基于图的神经网络模型形式可以用来对图中的节点进行快速且·可扩展的半监督分类。在大量数据集上的实验表明,与目前最先进的半监督学习方法相比,我们的模型在分类精度和效率(以挂钟时间衡量)上都有很好的表现。

***图上的快速近似卷积
1、拥有以下分层传播规则的多层图卷积网络:
计算机生成了可选文字:H(l十1)=0刀一5A刀一EH的了(0
这里,
在这里插入图片描述
是增加了自连接的无向图·的邻接矩阵。In是单位矩阵。
在这里插入图片描述
理解:
传统的图卷积,可以看做对于每一个节点,都加上其邻居节点的信息
在这里插入图片描述
不难看出,乘以邻接矩阵A就相当于对于每个节点,都加上了其邻居节点的feature,但是没有加自身的feature,除非该节点有自环。
对于每一个节点,都强行加上自环,即:
在这里插入图片描述
A矩阵是没有正则化的,我们需要对其进行正则化,使得每一行的和都为1,比如
在这里插入图片描述
论文中采取的方式()是:
在这里插入图片描述
最终形式为:
计算机生成了可选文字:,.4)=FA力EHIvvl)其中,:.4+了
对称归一化的拉普拉斯矩阵(Symmetric normalized Laplacian)

计算机生成了可选文字:“黑_刀一1/214刀一1/2=I_刀一1/2D一1/2耳中的各项内谷为:10i=和0ijandt'iadjacent忉与ot/
随机游走归一化拉普拉斯矩阵(Random walk normalized Laplacian)
计算机生成了可选文字:的各项内谷为:1d亟闻0idiag(th)0ijandadjacent忉屿he以“
拉普拉斯矩阵的性质:
计算机生成了可选文字:1拉的称这可以阝都对称而得。2于过斯的称则它的所的荇征匾都皇。3}的于任0的向蚩《我们有这刂过菩过斯的走义很容易得到蘢下:4〕拉萏薤斯正定的,且对篚的n个持征都大于于0《的:,《10且小的荇征匾为0,满个苎性亏3很容易得出。
拉普拉斯矩阵谱分解:
在这里插入图片描述
由性质(2)知道拉普拉斯矩阵是实对称矩阵,所以可以对角化,也就是找到一堆正交基:
在这里插入图片描述
且其中是U是单位矩阵(也是正交矩阵,由特征向量变换组合而成,U的列向量构成一组标准正交基),
在这里插入图片描述
卷积定理:

时域卷积,频域乘积

在这里插入图片描述
我们希望能将拉普拉斯算子用到graph中(即L),希望能衡量一个结点变化之后,对其他相邻结点(也可以说是整个graph)的干扰总收益。在graph上的拉普拉斯算子就是 L,即拉普拉斯矩阵。总之:Δ作用于graph===》等于 L·f,其中f就是graph,L是拉普拉斯矩阵。这是GCN中使用拉布拉斯矩阵的原因。
在这里插入图片描述
参阅资料:
1、从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi)
2、《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》论文阅读(一)
3、【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积
4、图卷积网络(Graph Convolutional Network)
5、图卷积网络 GCN Graph Convolutional Network(谱域GCN)的理解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值