GNN(Graph Neural Network)是一种用于图数据学习和预测的机器学习模型。它的原理是通过迭代地聚合节点和边的信息来学习图中节点的表示,并利用这些节点表示进行任务预测。下面是GNN的基本原理和工作流程:
-
图结构表示:GNN首先将图表示为节点和边的集合,其中节点表示图中的实体,边表示节点之间的关系。通常,图可以表示为邻接矩阵或邻接表的形式。
-
初始化节点表示:每个节点都被初始化为一个向量表示。这个初始化可以是随机的,也可以是基于节点的特征或标签进行的。
-
迭代信息传递:GNN通过迭代地传递和聚合节点和边的信息来更新节点的表示。在每一轮迭代中,每个节点将其邻居节点的信息进行聚合,并与自身的表示进行组合。这个聚合和组合的过程可以通过消息传递机制来实现,其中节点之间通过消息传递函数交换信息。
-
节点表示更新:通过迭代信息传递,每个节点逐渐积累和聚合邻居节点的信息,并更新自身的表示。节点的表示在每一轮迭代中通过消息传递和聚合操作进行更新。
-
任务预测:在节点表示更新完成后,可以利用这些更新的节点表示进行图上的任务预测。根据具体的任务,可以使用不同的输出层来生成预测结果,如分类、回归或图生成等。
GNN的核心思想是通过迭代地聚合节点和边的信息来捕捉图中的结构和特征,以便更好地理解和预测图数据。通过节点之间的信息传递和聚合,GNN能够从局部邻居信息中推断出全局图结构的特征。这种信息传递的过程使得GNN能够捕捉节点之间的依赖关系、图的全局模式和结构。
GNN的优势在于它能够自适应地学习节点的表示,从而能够处理不同大小和结构的图数据。它已被广泛应用于图分类、节点分类、链接预测、推荐系统和分子化学等领域,取得