最短路111

Floyd算法

三重for循环配合数组暴力求解
很容易理解,但是也很容易tle,核心代码三重for循环顺序没有要求
最好别用??

		memset(mp,0x3f,sizeof(mp));
		for(int i=1;i<=n;i++)
		mp[i][i]=0;
		for(int i=0;i<m;i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			mp[a][b]=mp[b][a]=c;
		}
		for(int k=1;k<=n;k++)
		{ 
			for(int i=1;i<=n;i++) 
			{ 
				for(int j=1;j<=n;j++) 
				{
					mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
					mp[j][i]=mp[i][j];
				} 	 
			} 
		}

迪杰斯特拉算法

标准板子题

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=500;
int mp[maxn][maxn],dis[maxn],book[maxn];
int main()
{
	int m,n,s,t,a,b,c;
	while(cin>>n>>m)
	{
	
		memset(mp,0x3f,sizeof(mp));
		memset(dis,0,sizeof(dis));
		memset(book,0,sizeof(book));
		for(int i=0;i<=n-1;i++)
		mp[i][i]=0;
		while(m--)
		{
			scanf("%d%d%d",&a,&b,&c);
			mp[a][b]=mp[b][a]=min(c,mp[b][a]);
		}
		cin>>s>>t;
		for(int i=0;i<=n-1;i++)
		dis[i]=mp[s][i];
		book[s]=1;
		int minn=0x3f3f3f3f,u;
		for(int i=1;i<=n-1;i++)
		{
			minn=0x3f3f3f3f;
			for(int j=0;j<=n-1;j++)
			{
				if(book[j]==0&&dis[j]<minn)
				{
					minn=dis[j];u=j;
				}
			}
			book[u]=1;
			for(int k=0;k<=n-1;k++)
			{
				if(mp[u][k]!=0x3f3f3f3f)
				{
					dis[k]=min(dis[u]+mp[u][k],dis[k]);
				} 
			}
		}
		if(dis[t]!=0x3f3f3f3f)
		printf("%d\n",dis[t]);
		else
		printf("-1\n");
	}
}

dis[i]表示的是起点到i点的最小距离。
思路可以理解为,dis[i]最初为起点到i点最小距离的估计值,当dis[i]被发现为最小时,则可以认为dis[i]由估计值变化为确定值(既然两点已经最小,则不可能在通过第三个点中转),随后利用dis[i]对其他dis进行松弛操作,如此操作n-1轮,直至所有估计值全部都变成确定值。

spfa+链式前向星

int dis[1000005],head[1000005],vis[1000005],num=0;//dis=0x3f,head=-1
struct road
{
	int b,c,nex;
}r[2000005];
void add(int a,int b,int c)
{
	r[num].b=b;
	r[num].c=c;
	r[num].nex=head[a];
	head[a]=num++;
}
void spfa(int num)
{
	queue<int>q;
	dis[num]=0;
	q.push(num);
	vis[num]=1;
	while(!q.empty())
	{
		int k=q.front();
		q.pop();
		vis[k]=0;
		for(int i=head[k];i!=-1;i=r[i].nex)
		{
			if(dis[r[i].b]>dis[k]+r[i].c)
			{
				dis[r[i].b]=dis[k]+r[i].c;
				if(vis[r[i].b]==0)
				{
					q.push(r[i].b);
					vis[r[i].b]=1;
				}	
			}
		}
	}
}

Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路
时间复杂度 O(nm)O(nm), nn 表示点数,mm 表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路
时间复杂度 平均情况下 O(m)O(m),最坏情况下 O(nm)O(nm), nn 表示点数,mm 表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值