【论题选编】稠密图最短路

本文探讨了如何处理边数巨大的稠密图最短路问题,提出通过去除无用选项、构造等价选项和优化建图方式来减少边的数量。举例介绍了四个不同场景下的最短路问题解决方案,包括异或边、平面直角坐标系上的距离、点权与位运算的结合,并提供了堆优化 Dijkstra 算法的应用。
摘要由CSDN通过智能技术生成

有的最短路题目中,可能边的数目很大,朴素建图边的数目为 O ( ∣ V ∣ 2 ) O(|V|^2) O(V2)。这样很难直接应用 Dijkstra 算法等。

对付这种图,一般采用的策略是:

  1. 去除无用选项。有可能两点之间直接连接的路径长一定不是最短路径,这样就可以排除大多数路径,只构造那些有用的边。
  2. 构造等价选项。有可能两点之间的路径长完全等价于按照某种简单模式形成的路径长,这样就可以考虑这种简单的模式。
  3. 优化建图方式。例如建立虚拟点,以代替完全子图中各个点之间的相互连边。

例 1:最短路 1

题意:有 n n n 个点, i i i 号点和 j j j 号点之间无向边的边权为 i xor ⁡ j i \operatorname{xor} j ixorj,求 1 1 1 号点到 n n n 号点的最短路。(原题:HDU 6713

由于 i xor ⁡ j xor ⁡ j xor ⁡ k = i xor ⁡ k ≤ i xor ⁡ j + j xor ⁡ k i\operatorname{xor}j\operatorname{xor}j\operatorname{xor}k = i\operatorname{xor}k \le i \operatorname{xor} j + j\operatorname{xor}k ixorjxorjxork=ixorkixorj+jxork,因此直接从 i i i k k k 一定比 i i i j j j 再到 k k k 更优。所以答案就是 1 xor ⁡ n 1 \operatorname{xor} n 1xorn

例 2:最短路

题意:给定一张边带权有向图,除了已有的边外,两个点之间还可以走异或边,权重为一个常数乘以两点编号的异或值。求指定两点的最短路。(原题:LOJ 6354

由于两个点之间的异或可以看作是一个点删掉某几位的 1、加上某几位的 1 得到,因此可以按位这种简单的模式建边。然后跑最短路即可。

priority_queue<pair<int, int> > pq;
int n, m, C, S, T;
int to[2200005], at[100005] = {
   0}, cnt = 0, nxt[2200005], w[2200005];
int dis[100005];
void init(){
   
    n = read(), m = read(), C = read();
    for (int i = 1; i <= m; ++i){
   
        int u = read(), v = read(), ww = read();
        w[++cnt] = ww;
        to[cnt] = v, nxt[cnt] = at[u], at[u] = cnt;
    }
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= n; j <<= 1)
            if 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值