欧几里德与扩展欧几里德算法

1.欧几里德算法(辗转相除法)

作用:求两个数的最大公约数。

设两个数为a,b(a>=b),则a,b的最大公约数为gcd(a,b),我先给出代码,然后解释。

int gcd(int a,int b)
{
    if (b==0)
    {
        return a;
    }
    else 
    {
        return gcd(b,a%b);
    }
}

给个浅显易懂的解释,这个解释是在百度上找到的(咳咳,虽然经常黑百度,但是有时候还是很有用的、、)

给出一个长为542,宽为114的长方形,先截下4个边长为114的正方形,剩下一个长为114,宽为86的长方形,然后再截,能截出1个边长为86的正方形,剩下一个长为86,宽为28的长方形,继续,截出三个边长为28的正方形,最后,能剩下一个长为28,宽为2的长方形,这时候能截成14个边长为2的正方形并且没有剩余。再从这往回想,说明2能整除28,28又能整除它之前截下的那三个正方形组成的长方形,一直往回推,发现2能整除114而且能整除542.这个2其实就是这两个数的最大公约数。

2.扩展欧几里德算法

基本思路:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

这个基于以下等式:

gcd(a,b)=gcd(b,a%b);

由这个式子可得出ax1+by1==gcd(b,a%b)=bx2+(a%b)y2;

a%b在计算机当中可以写成a-a/b*b,所以两个式子合并,可得出x1=y2,y1=x2-a/b*y2;

然后根据欧几里德算法不断递归,最后,会得出gcd(a',0)=a'x,即a'=a'x;

这时候x=1,y=0;a'是a和b的最大公约数。然后递归上去,就可以求出ax+by=gcd(a,b)的一个解。

int exgcd(int a,int b,int &x,int &y)
{
    if (b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else 
    {
     int r= exgcd(a,b,x,y);
      int t=x;
      x=y;
      y=t-a/b*x;
      return r;  
    }
}

而扩展欧几里德算法的应用,建议看这位大神的,不过他的第一个应用当中解释有些问题,去找评论,评论里面已经指出。

http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值