系列文章目录
目录
前言
tips:这里只是总结,不是教程哈。鉴于本人写字如画符,就不出视频教程了,如实在有需要,请在文章下方留言。当然,文章有任何问题,也请留言,谢谢!
为了方便知识与题目对照,本文章分为知识篇,和题型篇,先看知识在看题型食用更佳哦。有些不重要的知识,时间不充裕的可以不用看,我会在标题前面加“***”标注,可自行跳过。
思维导图放在第一篇文章最下面,请自行获取
一、向量、矩阵范数
1、向量范数
2、矩阵范数
2.1、F范数
3、条件数
3.1、***逆矩阵求法
3.1.1、二阶
3.1.2、三阶
二、矩阵分解法
1、杜利特尔(Doolittle)分解——LU分解
2、crout分解
三、三种迭代法
1、迭代法
1.1、迭代法的收敛性
充分条件 -- 严格行对角占优或严格列对角占优必收敛。
充分条件 -- 存在迭代矩阵Bj的某种范数||Bj||<1,则收敛
充分必要条件 -- B^k->0则收敛,是ρ(B)<1,即谱半径小于1,则收敛