数值分析(六) -- 线性方程求解(知识篇)

 系列文章目录

数值分析(一) -- 绪论(知识篇)

数值分析(二) -- 插值法(知识篇)

数值分析(三) -- 函数逼近-最小二乘法(知识篇)

数值分析(四) -- 数值积分(知识篇)

数值分析(五) -- 非线性方程求解(知识篇)

数值分析(六) -- 线性方程求解(知识篇)

数值分析(七) -- 常微分方程数值解法(知识篇)

数值分析 -- 题型篇


目录

 系列文章目录

前言

一、向量、矩阵范数

1、向量范数

2、矩阵范数

2.1、F范数

3、条件数

3.1、***逆矩阵求法

二、矩阵分解法

1、杜利特尔(Doolittle)分解——LU分解

2、crout分解

三、三种迭代法

1、迭代法

1.1、迭代法的收敛性

2、雅可比(Jacobi)迭代 

3、高斯-塞德尔(Gauss-Seidel)迭代 

4、逐次超松弛(SOR )迭代  


前言

tips:这里只是总结,不是教程哈。鉴于本人写字如画符,就不出视频教程了,如实在有需要,请在文章下方留言。当然,文章有任何问题,也请留言,谢谢!

为了方便知识与题目对照,本文章分为知识篇,和题型篇,先看知识在看题型食用更佳哦。有些不重要的知识,时间不充裕的可以不用看,我会在标题前面加“***”标注,可自行跳过。

思维导图放在第一篇文章最下面,请自行获取


一、向量、矩阵范数

1、向量范数

2、矩阵范数

2.1、F范数

3、条件数

3.1、***逆矩阵求法

3.1.1、二阶

3.1.2、三阶

二、矩阵分解法

1、杜利特尔(Doolittle)分解——LU分解

2、crout分解

三、三种迭代法

1、迭代法

1.1、迭代法的收敛性

充分条件 -- 严格行对角占优或严格列对角占优必收敛。

充分条件 -- 存在迭代矩阵Bj的某种范数||Bj||<1,则收敛

充分必要条件 -- B^k->0则收敛,是ρ(B)<1,即谱半径小于1,则收敛

2、雅可比(Jacobi)迭代 

3、高斯-塞德尔(Gauss-Seidel)迭代 

4、逐次超松弛(SOR )迭代  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值