Name: Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation
DOI: https://doi.org/10.1016/j.carbon.2019.03.046
摘要
在这项工作中,首次使用不同的机器学习算法和人工神经网络(ANN)结构来预测单层石墨烯在系统温度,应变率,空位缺陷和手性等各种影响因素下的力学性能。预测包括断裂应变、断裂强度和杨氏模量。高通量计算(HTC)结合经典的分子动力学(MD)模拟被用来生成ML模型的训练数据集。结果表明,温度和空位缺陷对预测结果都有负面影响,而应变速率与预测结果呈正相关。随机梯度下降法(SGD)不能准确反映不同影响因素对石墨烯力学性能的影响,而k-近邻法(KNN)、支持向量机(SVM)、决策树(DT