1,监督学习
2,样本的特征用向量表示
3,预测数据的特征与已知样本的特征之间计算距离
4,选择K个距离最近的样本
5,统计待分的类中,K个样本中的各个类别的数量
6,K个样本中,类别所占样本数最多的,即该预测数据的类别
K值的选取很关键,影响准确性。
样本的特征必须为有限的固定值
统计特征数量的更适合用k-近邻算法
1,监督学习
2,样本的特征用向量表示
3,预测数据的特征与已知样本的特征之间计算距离
4,选择K个距离最近的样本
5,统计待分的类中,K个样本中的各个类别的数量
6,K个样本中,类别所占样本数最多的,即该预测数据的类别
K值的选取很关键,影响准确性。
样本的特征必须为有限的固定值
统计特征数量的更适合用k-近邻算法