K近邻算法

1,监督学习

2,样本的特征用向量表示

3,预测数据的特征与已知样本的特征之间计算距离

4,选择K个距离最近的样本

5,统计待分的类中,K个样本中的各个类别的数量

6,K个样本中,类别所占样本数最多的,即该预测数据的类别

 

K值的选取很关键,影响准确性。

样本的特征必须为有限的固定值

统计特征数量的更适合用k-近邻算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zsyRain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值