一个很好想的贪心题(但居然花了我一个晚上的时间AC)。
1.我们肯定不能让一个字符串的后缀在它的后面。因为没有相同的字符串,所以不用考虑这种情况。
2.如果a是b的后缀,b是c的后缀,那么我们一定会让让a在b的前面,b在c的前面(不一定连在一起)。
3.举个例子,a,aa,aaa,b,bb,我们把a,aa,aaa放在一起,b,bb放在一起,很明显,b,bb要放在a,aa,aaa的前面(你得假设第0个字符串是空,为任何一个字符串的后缀)。ba,baa,baaa,bb,bbb,bbbb同理。
所以给每个字符串一个拓扑序,表示后缀个数,然后以这个拓扑序排序,然后每次把拓扑序相同的拿出来在以以他为后缀的字符串的个数从小到大排序,统计就行了。
找后缀要先反过来,再用字典树处理。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string>
using namespace std;
int n; string s[100001];
int tot, trie[510001][26], root, p[510001], ed[510001];
int cnt[510001], c[510001], sum[510001], top[510001];
long long total = 0;
void build(int o) {
int x = root;
for (int i = 0; i < s[o].length(); i++) {
int y = s[o][i] - 'a';
if (!trie[x][y]) trie[x][y] = ++tot;
x = trie[x][y];
p[x]++;
}
ed[o] = x, c[x]++;
}
void dfs(int o) {
int x = root;
for (int i = 0; i < s[o].length(); i++) {
int y = s[o][i] - 'a';
x = trie[x][y];
top[o] += c[x];
}
}
bool cmp(int p1, int p2) {
return top[p1] < top[p2];
}
bool cmp2(int p1, int p2) {
return cnt[p1] < cnt[p2];
}
int get(int o) {
int x = root, ans = 0;
for (int i = 0; i < s[o].length() - 1; i++) {
int y = s[o][i] - 'a';
x = trie[x][y];
if (p[x]) ans = p[x];
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
cin >> s[i];
for (int mid = (s[i].length() - 1) / 2, j = 0; j <= mid; j++)
swap(s[i][j], s[i][s[i].length() - j - 1]);
}
// cout << endl;
// for (int i = 1; i <= n; i++) cout << s[i] << endl;
for (int i = 1; i <= n; i++) build(i);
for (int i = 1; i <= n; i++) cnt[i] = p[ed[i]];
for (int i = 1; i <= n; i++) dfs(i);
memset(p, 0, sizeof(p));
for (int i = 1; i <= n; i++) p[ed[i]] = i;
for (int i = 1; i <= n; i++) ed[i] = i;
sort(ed + 1, ed + n + 1, cmp);
top[0] = -1;
for (int i = 1; i <= n; i++)
if (top[ed[i]] != top[ed[i - 1]]) {
int t = 0;
for (int j = i; j <= n; j++)
if (top[ed[i]] == top[ed[j]])
c[++t] = ed[j];
else break;
sort(c + 1, c + t + 1, cmp2);
for (int j = 1; j <= t; j++) {
int last = get(c[j]);
total += 1ll * (sum[last] + 1);
sum[last] += cnt[c[j]];
}
}
cout << total << endl;
return 0;
}