费曼积分法

文章详细展示了如何使用费曼积分法解决特定积分问题,通过构造有系数的积分并求导简化表达式。同时,介绍了狄利克雷积分的概念,展示了如何处理趋于无穷的积分,最后得出特定积分的精确值。整个过程涉及到微积分中的重要技巧和方法。
摘要由CSDN通过智能技术生成

简单来说,费曼积分法就是通过构造有系数的积分,对新式子先求导后积分使得积分式简化的做法。

T1

S = ∫ 0 1 ln ⁡ ( x + 1 ) x 2 + 1 d x S=\int_{0}^{1}\frac{\ln(x+1)}{x^2+1}\mathrm{d}x S=01x2+1ln(x+1)dx

I ( a ) = ∫ 0 1 ln ⁡ ( a x + 1 ) x 2 + 1 d x I(a)=\int_{0}^{1}\frac{\ln(ax+1)}{x^2+1}\mathrm{d}x I(a)=01x2+1ln(ax+1)dx,显然 I ( 0 ) = 0 , I ( 1 ) = S I(0)=0,I(1)=S I(0)=0,I(1)=S

∂ I ∂ a = ∫ 0 1 a ( a x + 1 ) ( x 2 + 1 ) d x = 1 a 2 + 1 ∫ 0 1 ( a + x x + 1 − a a x + 1 ) d x = 1 a 2 + 1 [ a ⋅ arctan ⁡ x ∣ 0 1 + 1 2 ln ⁡ ( x 2 + 1 ) ∣ 0 1 − ln ⁡ ( a x + 1 ) ∣ 0 1 ] = 1 a 2 + 1 [ a ⋅ π 4 + 1 2 ln ⁡ 2 − ln ⁡ ( a + 1 ) ] = a π + 2 ln ⁡ 2 − 4 ln ⁡ ( a + 1 ) 4 ( a 2 + 1 ) \begin{aligned}\frac{\partial I}{\partial a}&=\int_{0}^{1}\frac{a}{(ax+1)(x^2+1)}\mathrm{d}x\\ &=\frac{1}{a^2+1}\int_{0}^{1}(\frac{a+x}{x+1}-\frac{a}{ax+1})\mathrm dx\\ &=\frac{1}{a^2+1}[a\cdot \arctan x|_{0}^{1}+\frac{1}{2}\ln(x^2+1)|_{0}^{1}-\ln(ax+1)|_{0}^{1}]\\ &=\frac{1}{a^2+1}[a\cdot\frac{\pi}{4}+\frac{1}{2}\ln2-\ln(a+1)]\\ &=\frac{a\pi+2\ln2-4\ln(a+1)}{4(a^2+1)} \end{aligned} aI=01(ax+1)(x2+1)adx=a2+1101(x+1a+xax+1a)dx=a2+11[aarctanx01+21ln(x2+1)01ln(ax+1)01]=a2+11[a4π+21ln2ln(a+1)]=4(a2+1)+2ln24ln(a+1)

由牛顿莱布尼茨公式 ∫ a b f ′ ( x ) d x = f ( b ) − f ( a ) \int_{a}^{b}f'(x)\mathrm{d}x=f(b)-f(a) abf(x)dx=f(b)f(a),可知
I ( 1 ) − I ( 0 ) = ∫ 0 1 ∂ I ∂ a d a I(1)-I(0)=\int_{0}^{1}\frac{\partial I}{\partial a}\mathrm{d}a I(1)I(0)=01aIda

I ( 0 ) = 0 , I ( 1 ) = S I(0)=0,I(1)=S I(0)=0,I(1)=S,因此
S = ∫ 0 1 ∂ I ∂ a d a = ∫ 0 1 a π + 2 ln ⁡ 2 − 4 ln ⁡ ( a + 1 ) 4 ( a 2 + 1 ) d a = ∫ 0 1 a π + 2 ln ⁡ 2 4 ( a 2 + 1 ) d a − ∫ 0 1 4 ln ⁡ ( a + 1 ) 4 ( a 2 + 1 ) d a = ∫ 0 1 a π + 2 ln ⁡ 2 4 ( a 2 + 1 ) d a − S ∴ S = ∫ 0 1 a π + 2 ln ⁡ 2 8 ( a 2 + 1 ) d a = 1 8 ( π ⋅ 1 2 ln ⁡ ( a 2 + 1 ) ∣ 0 1 + 2 ln ⁡ 2 ⋅ arctan ⁡ a ∣ 0 1 ) = 1 8 ( π ln ⁡ 2 2 + π ln ⁡ 2 2 ) = π ln ⁡ 2 8 \begin{aligned}S&=\int_{0}^{1}\frac{\partial I}{\partial a}\mathrm{d}a\\ &=\int_{0}^{1}\frac{a\pi+2\ln2-4\ln(a+1)}{4(a^2+1)}\mathrm{d}a\\ &=\int_{0}^{1}\frac{a\pi+2\ln2}{4(a^2+1)}\mathrm{d}a-\int_{0}^{1}\frac{4\ln(a+1)}{4(a^2+1)}\mathrm{d}a\\ &=\int_{0}^{1}\frac{a\pi+2\ln2}{4(a^2+1)}\mathrm{d}a-S\\ \therefore S&=\int_{0}^{1}\frac{a\pi+2\ln2}{8(a^2+1)}\mathrm{d}a\\ &=\frac{1}{8}(\pi\cdot\frac{1}{2}\ln(a^2+1)|_{0}^{1}+2\ln2\cdot\arctan a|_{0}^{1})\\ &=\frac{1}{8}(\frac{\pi\ln2}{2}+\frac{\pi\ln2}{2})\\ &=\frac{\pi\ln2}{8} \end{aligned} SS=01aIda=014(a2+1)+2ln24ln(a+1)da=014(a2+1)+2ln2da014(a2+1)4ln(a+1)da=014(a2+1)+2ln2daS=018(a2+1)+2ln2da=81(π21ln(a2+1)01+2ln2arctana01)=81(2πln2+2πln2)=8πln2

T2

S = ∫ 0 π 2 ln ⁡ ( 4 cos ⁡ 2 x + sin ⁡ 2 x ) d x S=\int_{0}^{\frac{\pi}{2}}\ln(4\cos^2x+\sin^2x)\mathrm{d}x S=02πln(4cos2x+sin2x)dx

I ( a ) = ∫ 0 π 2 ln ⁡ ( a 2 cos ⁡ 2 x + sin ⁡ 2 x ) d x I(a)=\int_{0}^{\frac{\pi}{2}}\ln(a^2\cos^2x+\sin^2x)\mathrm{d}x I(a)=02πln(a2cos2x+sin2x)dx,显然 I ( 1 ) = 0 , I ( 2 ) = S I(1)=0,I(2)=S I(1)=0,I(2)=S

∂ I ∂ a = ∫ 0 π 2 2 a cos ⁡ 2 x a 2 cos ⁡ 2 x + sin ⁡ 2 x d x = ∫ 0 π 2 2 a a 2 + tan ⁡ 2 x d x = ∫ 0 π 2 2 a sec ⁡ 2 x a 2 sec ⁡ 2 x + tan ⁡ 2 x sec ⁡ 2 x d x = ∫ 0 π 2 2 a ⋅ d tan ⁡ x sec ⁡ 2 x ( a 2 + tan ⁡ 2 x ) = ∫ 0 π 2 2 a ⋅ d tan ⁡ x ( tan ⁡ 2 x + 1 ) ( a 2 + tan ⁡ 2 x ) u = tan ⁡ x = ∫ 0 + ∞ 2 a ⋅ d u ( u 2 + 1 ) ( a 2 + u 2 ) = 2 a a 2 − 1 ∫ 0 + ∞ ( 1 1 + u 2 − 1 a 2 + u 2 ) ⋅ d u = 2 a a 2 − 1 ( arctan ⁡ u ∣ 0 ∞ − 1 a arctan ⁡ x ∣ 0 ∞ ) = 2 a a 2 − 1 ( π 2 − 1 a ⋅ π 2 ) = π a + 1 \begin{aligned}\frac{\partial I}{\partial a}&=\int_{0}^{\frac{\pi}{2}}\frac{2a\cos^2x}{a^2\cos^2x+\sin^2x}\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2a}{a^2+\tan^2x}\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2a\sec^2x}{a^2\sec^2x+\tan^2x\sec^2x}\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2a\cdot\mathrm{d}\tan x}{\sec^2x(a^2+\tan^2x)}\\&=\int_{0}^{\frac{\pi}{2}}\frac{2a\cdot\mathrm{d}\tan x}{(\tan^2x+1)(a^2+\tan^2x)}\\ u=\tan x\\ &=\int_{0}^{+\infty}\frac{2a\cdot\mathrm{d}u}{(u^2+1)(a^2+u^2)}\\ &=\frac{2a}{a^2-1}\int_{0}^{+\infty}(\frac{1}{1+u^2}-\frac{1}{a^2+u^2})\cdot\mathrm{d}u\\ &=\frac{2a}{a^2-1}(\arctan u|_{0}^{\infty}-\frac{1}{a}\arctan x|_{0}^{\infty})\\ &=\frac{2a}{a^2-1}(\frac{\pi}{2}-\frac{1}{a}\cdot\frac{\pi}{2})\\ &=\frac{\pi}{a+1} \end{aligned} aIu=tanx=02πa2cos2x+sin2x2acos2xdx=02πa2+tan2x2adx=02πa2sec2x+tan2xsec2x2asec2xdx=02πsec2x(a2+tan2x)2adtanx=02π(tan2x+1)(a2+tan2x)2adtanx=0+(u2+1)(a2+u2)2adu=a212a0+(1+u21a2+u21)du=a212a(arctanu0a1arctanx0)=a212a(2πa12π)=a+1π

∴ S = I ( 2 ) − I ( 1 ) = ∫ 1 2 ∂ I ∂ a d a = ∫ 1 2 π a + 1 d a = π ⋅ ln ⁡ ( a + 1 ) ∣ 1 2 = π ln ⁡ 3 2 \begin{aligned}\therefore S&=I(2)-I(1)\\ &=\int_{1}^{2}\frac{\partial I}{\partial a}\mathrm{d}a\\ &=\int_{1}^{2}\frac{\pi}{a+1}\mathrm{d}a\\ &=\pi\cdot\ln(a+1)|_{1}^{2}\\ &=\pi\ln\frac{3}{2} \end{aligned} S=I(2)I(1)=12aIda=12a+1πda=πln(a+1)12=πln23

由以上可以得到一个更一般的式子
∫ 0 π 2 ln ⁡ ( a 2 cos ⁡ 2 x + b 2 sin ⁡ 2 x ) d x = π ln ⁡ ∣ a ∣ + ∣ b ∣ 2 \int_{0}^{\frac{\pi}{2}}\ln(a^2\cos^2x+b^2\sin^2x)\mathrm {d}x=\pi\ln\frac{|a|+|b|}{2} 02πln(a2cos2x+b2sin2x)dx=πln2a+b

浅写一下,
∫ 0 π 2 ln ⁡ ( a 2 cos ⁡ 2 x + b 2 sin ⁡ 2 x ) d x = ∫ 0 π 2 [ 2 ln ⁡ ∣ b ∣ + ln ⁡ ( a 2 b 2 cos ⁡ 2 x + sin ⁡ 2 x ) ] d x = ∫ 0 π 2 2 ln ⁡ ∣ b ∣ d x + ∫ 0 ∣ a ∣ ∣ b ∣ π t + 1 d t = π ln ⁡ ∣ a ∣ + ∣ b ∣ 2 \begin{aligned}\int_{0}^{\frac{\pi}{2}}\ln(a^2\cos^2x+b^2\sin^2x)\mathrm {d}x&=\int_{0}^{\frac{\pi}{2}}[2\ln |b|+\ln(\frac{a^2}{b^2}\cos^2x+\sin^2x)]\mathrm{d}x\\ &=\int_{0}^{\frac{\pi}{2}}2\ln|b|\mathrm{d}x+\int_{0}^{\frac{|a|}{|b|}}\frac{\pi}{t+1}\mathrm{d}t\\ &=\pi\ln\frac{|a|+|b|}{2} \end{aligned} 02πln(a2cos2x+b2sin2x)dx=02π[2lnb+ln(b2a2cos2x+sin2x)]dx=02π2lnbdx+0bat+1πdt=πln2a+b

T3

狄利克雷积分
S = ∫ 0 + ∞ sin ⁡ x x d x S=\int_{0}^{+\infty}\frac{\sin x}{x}\mathrm{d}x S=0+xsinxdx

I ( a ) = ∫ 0 + ∞ e − a x ⋅ sin ⁡ x x d x I(a)=\int_{0}^{+\infty}e^{-ax}\cdot\frac{\sin x}{x}\mathrm{d}x I(a)=0+eaxxsinxdx,显然 I ( 0 ) = S , I ( + ∞ ) = 0 I(0)=S,I(+\infty)=0 I(0)=S,I(+)=0
其中 e − a x e^{-ax} eax视为缩放因子,与用留数定理做积分中的 e i m e^{\mathrm{i}m} eim有较强的联系。

T = ∂ I ∂ a = − ∫ 0 + ∞ e − a x ⋅ sin ⁡ x d x = 1 a ∫ 0 + ∞ sin ⁡ x d e − a x = 1 a sin ⁡ x e − a x ∣ 0 ∞ − 1 a ∫ 0 + ∞ e − a x ⋅ cos ⁡ x d x = − 1 a ∫ 0 + ∞ e − a x ⋅ cos ⁡ x d x = 1 a 2 ∫ 0 + ∞ cos ⁡ x d e − a x = 1 a 2 ∫ 0 + ∞ cos ⁡ x e − a x ∣ 0 ∞ − 1 a 2 ∫ 0 + ∞ e − a x ⋅ ( − sin ⁡ x ) d x = − 1 a 2 + 1 a 2 ∫ 0 + ∞ e − a x ⋅ sin ⁡ x d x = − 1 a 2 + 1 a 2 ( − T ) ⇒ ∂ I ∂ a = T = − 1 a 2 + 1 \begin{aligned}T=\frac{\partial I}{\partial a}&=-\int_{0}^{+\infty}e^{-ax}\cdot\sin x\mathrm{d}x\\ &=\frac{1}{a}\int_{0}^{+\infty}\sin x\mathrm{d}{e^{-ax}}\\ &=\frac{1}{a}\sin xe^{-ax}|_{0}^{\infty}-\frac{1}{a}\int_{0}^{+\infty}e^{-ax}\cdot\cos x\mathrm{d}x\\ &=-\frac{1}{a}\int_{0}^{+\infty}e^{-ax}\cdot\cos x\mathrm{d}x\\ &=\frac{1}{a^2}\int_{0}^{+\infty}\cos x\mathrm{d}{e^{-ax}}\\ &=\frac{1}{a^2}\int_{0}^{+\infty}\cos xe^{-ax}|_{0}^{\infty}-\frac{1}{a^2}\int_{0}^{+\infty}e^{-ax}\cdot(-\sin x)\mathrm{d}x\\ &=-\frac{1}{a^2}+\frac{1}{a^2}\int_{0}^{+\infty}e^{-ax}\cdot\sin x\mathrm{d}x\\ &=-\frac{1}{a^2}+\frac{1}{a^2}(-T)\\ \Rightarrow \frac{\partial I}{\partial a}=T&=-\frac{1}{a^2+1} \end{aligned} T=aIaI=T=0+eaxsinxdx=a10+sinxdeax=a1sinxeax0a10+eaxcosxdx=a10+eaxcosxdx=a210+cosxdeax=a210+cosxeax0a210+eax(sinx)dx=a21+a210+eaxsinxdx=a21+a21(T)=a2+11

∴ S = I ( 0 ) − I ( + ∞ ) = ∫ + ∞ 0 ∂ I ∂ a d a = ∫ + ∞ 0 − 1 a 2 + 1 d a = − arctan ⁡ a ∣ + ∞ 0 = π 2 \begin{aligned} \therefore S&=I(0)-I(+\infty)\\ &=\int_{+\infty}^{0}\frac{\partial I}{\partial a}\mathrm{d}a\\ &=\int_{+\infty}^{0}-\frac{1}{a^2+1}\mathrm{d}a\\ &=-\arctan a|_{+\infty}^{0}\\ &=\frac{\pi}{2} \end{aligned} S=I(0)I(+)=+0aIda=+0a2+11da=arctana+0=2π

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值