1、NameNode 内存生产配置
1)NameNode 内存计算
每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢?
128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿
G MB KB Byte
2)Hadoop2.x 系列,配置 NameNode 内存
NameNode 内存默认 2000m,如果服务器内存 4G,NameNode 内存可以配置 3g。在hadoop-env.sh 文件中配置如下。
HADOOP_NAMENODE_OPTS=-Xmx3072m
3)Hadoop3.x 系列,配置 NameNode 内存
(1)hadoop-env.sh 中描述 Hadoop 的内存是动态分配的
# The maximum amount of heap to use (Java -Xmx). If no unit
# is provided, it will be converted to MB. Daemons will
# prefer any Xmx setting in their respective _OPT variable.
# There is no default; the JVM will autoscale based upon machine
# memory size.
# export HADOOP_HEAPSIZE_MAX=
# The minimum amount of heap to use (Java -Xms). If no unit
# is provided, it will be converted to MB. Daemons will
# prefer any Xms setting in their respective _OPT variable.
# There is no default; the JVM will autoscale based upon machine
# memory size.
# export HADOOP_HEAPSIZE_MIN=
HADOOP_NAMENODE_OPTS=-Xmx102400m
(2)查看 NameNode 占用内存
[atguigu@hadoop102 ~]$ jps
3088 NodeManager
2611 NameNode
3271 JobHistoryServer
2744 DataNode
3579 Jps
[atguigu@hadoop102 ~]$ jmap -heap 2611
Heap Configuration:
MaxHeapSize = 1031798784 (984.0MB)
(3)查看 DataNode 占用内存
[atguigu@hadoop102 ~]$ jmap -heap 2744
Heap Configuration:
MaxHeapSize = 1031798784 (984.0MB)
查看发现 hadoop102 上的 NameNode 和 DataNode 占用内存都是自动分配的,且相等。不是很合理。
经验参考:
https://docs.cloudera.com/documentation/enterprise/6/releasenotes/topics/rg_hardware_requirements.html#concept_fzz_dq4_gbb
具体修改:hadoop-env.sh
export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS -Xmx1024m"
export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS -Xmx1024m"
2、NameNode 心跳并发配置
1)hdfs-site.xml
The number of Namenode RPC server threads that listen to requests
from clients. If dfs.namenode.servicerpc-address is not
configured then Namenode RPC server threads listen to requests
from all nodes.
NameNode 有一个工作线程池,用来处理不同 DataNode 的并发心跳以及客户端并发
的元数据操作。
对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。
<property>
<name>dfs.namenode.handler.count</name>
<value>21</value>
</property>
企业经验:dfs.namenode.handler.count=20 × 𝑙𝑜𝑔~𝑒^𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆𝑖𝑧𝑒,比如集群规模(DataNode 台数)为 3 台时,此参数设置为 21。可通过简单的 python 代码计算该值,代码如下。
[atguigu@hadoop102 ~]$ sudo yum install -y python
[atguigu@hadoop102 ~]$ python
Python 2.7.5 (default, Apr 11 2018, 07:36:10)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> import math
>>> print int(20*math.log(3))
21
>>> quit()
3、开启回收站配置
开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。
1)回收站工作机制
2)开启回收站功能参数说明
(1)默认值 fs.trash.interval = 0,0 表示禁用回收站;其他值表示设置文件的存活时间。
(2)默认值 fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为 0,则该值设置和 fs.trash.interval 的参数值相等。
(3)要求 fs.trash.checkpoint.interval <= fs.trash.interval。
3)启用回收站
修改 core-site.xml,配置垃圾回收时间为 1 分钟。
<property>
<name>fs.trash.interval</name>
<value>1</value>
</property>
4)查看回收站
回收站目录在 HDFS 集群中的路径:/user/atguigu/.Trash/….
5)注意:通过网页上直接删除的文件也不会走回收站。
6)通过程序删除的文件不会经过回收站,需要调用 moveToTrash()才进入回收站
Trash trash = New Trash(conf);
trash.moveToTrash(path);
7)只有在命令行利用 hadoop fs -rm 命令删除的文件才会走回收站。
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -rm -r /user/atguigu/input
2021-07-14 16:13:42,643 INFO fs.TrashPolicyDefault: Moved:
'hdfs://hadoop102:9820/user/atguigu/input' to trash at:
hdfs://hadoop102:9820/user/atguigu/.Trash/Current/user/atguigu
/input
8)恢复回收站数据
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -mv
/user/atguigu/.Trash/Current/user/atguigu/input
/user/atguigu/input