在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。给出一个整数序列,求该序列的逆序数。
Input
第1行:N,N为序列的长度(n <= 50000) 第2 - N + 1行:序列中的元素(0 <= A[i] <= 10^9)
Output
输出逆序数
Input示例
4 2 4 3 1
Output示例
4
解题思路:树状数组,发现这里数字较大,可以离散化,然后每来一个数那么这个数在树状数组上贡献1,贡献过之后,这个数是第几个被插入的,而又有多少个比他小的数被插入了,做差就是比他大的数在之前被插入了 。归并排序也能做,在合并两数组的时候统计。vector也能做,每插入一个数,看他能插到第几位,然后size-插的位数就行,然后吧这个数插入这个位置。
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
int c[50010];
struct node
{
int num,id;
}a[50010];
int tmp[50010];
int n;
bool cmp(node x,node y)
{
return x.num<y.num;
}
void update(int x,int add)
{
while(x<=n)
{
c[x]=c[x]+add;
x=x+(x&(-x));
}
}
int sum(int x)
{
int t=0;
while(x>0)
{
t=t+c[x];
x=x-(x&(-x));
}
return t;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].num);
a[i].id=i;
}
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++)//离散化
{
tmp[a[i].id]=i;
}
int ans=0;
for(int i=1;i<=n;i++)
{
update(tmp[i],1);
ans=ans+i-sum(tmp[i]);//这个数是第几个被插入的,而又有多少个比
他小的数被插入了,做差就是比他大的数在之前被插入了
}
printf("%d\n",ans);
return 0;
}