基于时空网络的出租车OD需求预测-模型框架(附数据集下载方式)

这周和下周公众号暂停更新哇,因为我要出去浪两周,哈哈哈哈!

1、文章信息

《Contextualized Spatial–Temporal Network for Taxi rigin-Destination Demand Prediction》。

2019发在IEEE Transactions on Intelligent Transportation Systems上的一篇文章(运输科技2区,IF:5.744)。

摘要简介部分请看上一篇文章:

基于时空网络的出租车OD需求预测-简介

4、符号概念定义

A、全网的区域划分

我们根据经纬度将一个城市划分为H×W不重叠网格地图。每个矩形网格代表城市中不同的地理区域。网格映射第i行和第j列上的区域在下面的部分中表示为R(i, j)。图1(a)显示了纽约市曼哈顿的分区区域。通过这种简单的划分方法,原始出租车请求记录可以直接转化为矩阵或张量,这是深度神经网络中最常见的输入数据格式。

B、出租车OD需求

OD需求这块有点绕,需要搞明白,一个区域的需求产生量可能会前往其他所有区域(一对多的关系),而一个区域的需求吸引量可能会来自其他所有区域(多对一的关系)。

在打车行业,出租车公司或滴滴出行、优步等在线平台每秒钟都会收到大量乘客的打车请求。每个原始出租车请求包含乘客的起始位置、目的地位置、时间戳和其他信息(例如用户标识和电话号码)。在我们的工作中,出租车始发目的地需求定义为在每个时间间隔内从始发区域到目的地区域的出租车请求总数。

我们将时间区间t内出租车OD需求表示为三维矩阵Xt∈R(N×H×W),其中H和W分别为城市网格地图的高度和宽度。N是城市区域总数,等于H·W。(此处N=H·W是上面提及的多对一的关系,即到达一个区域的乘客可能来自其他所有区域,所以,一个区域得需要一个矩阵,N个区域需要H·W个矩阵)(高亮部分是一个总体表达式,是针对所有O点所有D的,公式好多, 不写了直接上图……)

C、出租车OD需求预测

出租车OD需求预测问题是给定t 时刻之前的数据,预测时间间隔t内的出租车OD 需求。如图2所示,出租车需求受到气象条件的严重影响,因此我们也加入了历史气象数据来处理这个任务,我们将时间间隔i中的气象数据表示为Mi。

5、模型框架

下面对模型的三个部分(蓝框、黄框、红框)依次进行介绍。

A、Local Spatial Context Modeling局部空间环境

一般情况下,出租车的需求往往与当地的空间位置有关,空间相邻区域可能具有相似的需求模式。例如,人们倾向于在早高峰时段离开居住地前往就业地区。在这种情况下,城市郊区的大部分居住区域都有较高的O点需求,而城市中心的大部分工作区域都有较高的D点需求。反之亦然。近年来,研究者利用卷积层对出租车O点需求的局部空间环境进行了建模,但忽略了D点的需求。

在这项工作中,我们提出的LSC模块同时从O点视角和D点视角捕获出租车需求的局部空间信息。相当于利用了两个张量,一个是OD矩阵,一个是DO矩阵。下图说明了从OD矩阵转换为DO矩阵的过程。

对两个矩阵分别进行卷积在进行特征融合即可,不再详述。文章将下图称为ConvNets。

B、Temporal Evolution Context Modeling时间演化环境

出租车需求是一个时变的过程,通常受多种复杂因素的影响。除了自身的内部状态,气象条件也影响着未来的需求。例如,持续的降雪可能会严重削弱居民的出行意愿,导致出行需求下降。因此,我们结合历史需求特征和不断变化的气象条件,把握出租车需求沿时间维度的演变趋势。

这一块也比较简单,即将第一部分的卷积结果和对天气数据的卷积结果进行融合,然后输入到ConvLSTM层即可。(这一块文章中写的比较复杂,把ConvLSTM的来龙去脉和公式都详细解释了一遍)

我们的目标是利用过去n个时间间隔的历史需求和气象条件来预测Xt的出租车需求。对于气象数据Mi,我们用多层感知器(MLP)对其进行编码,多层感知器由三个堆叠的全连接层实现,分别由64个、16个和8个神经元组成。然后将MLP的输出特征复制H·W次,构建3D气象特征,以便与上一部分的输出结果进行融合。

C、Global Correlation Context Modeling全局相关环境

在上述两个模块中,ConvNets和ConvLSTM只捕获了出租车需求的局部信息。然而,出租车需求分布也与区域属性有关,例如,城市不同区域的大部分居住区在早高峰时段可能会有较高的出租车需求。因此,即使两个区域相距遥远,只要两个区域的属性一致,它们的出租车需求模式也可能是相似的。我们将这种关联称为全局相关环境。

本文通过全局特征融合操作,获取各区域间的全局相关性。具体来说,我们将每个区域的全局相关特征表示为所有区域特征的加权和,权重计算为对应OD对之间的相似性。这样,每个区域包含了所有区域的信息,主要与与之高度相似的区域相关。

这一块比较复杂(可解释性也不太强),具体操作就是,先将B部分的输出经过一个有Cs个filter的Conv层,输出形状为Cs*H*W, 再将该输出reshape成Cs*N,然后转置为N*Cs, 两者点成得到N*N的相似性矩阵S。

将B部分的输出reshape成Cf*N, 并与相似性矩阵相乘, 结果形状为Cf*N,再将该结果reshape成Cf*H*W。该结果(即下图中的Fg)对全局相关环境进行编码,但这样缺乏结构性的局部特征,这会导致性能下降,因此再将该结果与B部分的输出连接,最后经过一个Conv层,得到最终的输出结果。该特征Fltg融合了局部空间信息、时间演化信息和全局相关信息的混合信息。

6、特别之处

文章后面的实验部分不再介绍。文章总的来说很新颖,尤其是全局空间相似性这块个人感觉可以借鉴学习。后台回复“纽约”获取文章使用的纽约出租车数据集。点击阅读原文下载文章原文。

Attention

如果你和我一样是轨道交通、道路交通、城市规划相关领域的,可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

Transportation-ML

与你分享科研成长的乐趣

长按二维码关注

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值