(45) 基于残差时空网络的交通需求预测

今天去理发,听到很好听的一首歌,去问了小姐姐歌叫什么名字,《时光与你都很甜》,分享给小伙伴们~

1、文章信息

《A residual spatio-temporal architecture for travel demand forecasting》。

东北大学2020年发在Transportation Research Part C上的一篇文章。

2、摘要

本文提出了一种用于短期旅行需求预测的深度结构——残差时空网络(RSTN)。它由全卷积神经网络(FCNs)和extended Conv-LSTM (CE-LSTM)组成的混合模块组成,该模块通过调整Conv-LSTM、卷积神经网络(CNNs)和传统LSTM的超参数,实现卷积操作和LSTM单元的平衡。这些模块通过残差连接进行组合,以捕获旅行需求的空间、时间和外部因素依赖关系。端到端可训练的RSTN将传统的预测问题重新定义为一个关于每个时间区间内旅行密度的学习残差函数。在此基础上,提出了一种基于动态请求向量dynamic request vector (DRV)的数据表示方案,该方案能够捕捉到需求趋势的内在特征和变化,提高了预测的性能。在两个实字数据集上的仿真表明,该方法的预测效果优于现有的预测算法,使均方根误差(RMSE)降低了17.87%。

3、问题定义

与现有的方法一样,将城市统一划分为I×J个网格,每个网格代表一个区域。收集信息所需的时间段定义为时间间隔。根据区域和时间的划分,我们对变量的定义如下。

(1) Demand intensity and dynamic request vector

文章定义了一个需求强度指标d,该指标并没有使用网格在固定时间间隔的订单数量,而是提出了一个全新的概念动态请求向量dynamic request vector (DRV),不仅能表示需求的强度,而且能表示其变化的趋势。

在构建DRV时,我们需要将每个时间间隔划分为子间隔(这点及其与众不同),并记录相应的强度。其中子区间内的强度即为订单数据,这种设计可以通过在数据中“寻找”来估计出行需求的变化趋势。(说白了就是将一个时间间隔划分成了若干子间隔,计算每个子间隔的订单数量,形成一个向量,这样一个时间间隔内的2Dtensor就变成了3Dtensor)。

(2)Travel time rate

出行需求与交通拥堵状况存在复杂的相关关系。两者之间存在一定的正相关关系,即当交通量增加时,交通会变得拥挤。然而,在拥挤的地区,人们可能会选择交通工具,如地铁,而不是这里所关心的出租车。为了预测出行需求,本文采用平均出行时间率(即每单位旅行距离的平均旅行时间)表示交通拥堵条件,如下:(即各个子间隔内时间与距离的比值之和作为该时间间隔内的出行时间率,最终得到的是一个(I×J)的矩阵。)

(3) Point of interest (POI)

POI表示区域的地理属性,由区域中所包含的不同类别设施的数量来表示。本文采用K-means算法重新设计了一种新的聚类算法,得到了三个聚类中心,并将其作为新的类别。(其实就是每个区域有一个POI属性向量,然后把区域的POI属性向量利用K-means进行聚类,聚成固定的三类(0,1,2),最后得到一个(I×J)的矩阵,里面的元素均为0,1,2,作为最终的POI矩阵,该矩阵和时间没有关系,只是固定的一个二维POI矩阵)

(4)Time-of-day, day-of-week and weather

处理方法与上面类似,其中天气因素考虑了天气描述、气温、PM2.5的值。这几个变量和区域没有关系,只和时间有关,也就是全市用的统一的天气描述、气温、PM2.5的值。

短期出行需求预测问题的目的是利用收集到时间间隔t的历史数据,估计t + 1时间内城市各区域的出行需求数量。(Hs和rs,即Time-of-day, day-of-week是任何时间都知道的,所以可以用t+1时刻的数据)

在进一步讨论之前,需要指出的是,我们将具有明显时空特征的变量称为时空变量,如需求强度、交通拥挤条件等。像时间、星期和天气这样只反映时间依赖性的变量称为时间序列变量。类似地,空间变量指的是仅显示空间依赖性的变量,如POI数据。

4、Model

在本节中,我们描述的细节提出RSTN架构(如图3所示),用于公式 (5)。RSTN由三部分组成的,空间相关性嵌入(SCE), 时空依赖性近似(STDA)和残差连接(RC)。

(1)SCE (the FCN layers)

一个城市不同区域的需求可能具有一定的相关性。直观上看,相邻或相同地区的出行模式可能有一定的相似性。因此,RSTN的第一步是探索需求密度Dt的空间相关性。在本研究中,我们使用全卷积神经网络(fully convolutional neural network, FCN)来构造SCE部分,CNN允许与输入图像大小相同且具有嵌入空间相关性的任意输入分辨率和输出特征。整个处理过程就是将DRV三维tensor经过CNN重新得到一个三维tensor。

(2)STDA (hybrid module)时空依赖近似模块

该模块是一个汇合模块,也即图3中的黄色STDA框,该框内主要对POI二维矩阵,Time-of-day, day-of-week and weather数据,以及Travel time rate数据进行处理,其中POI数据是I×J×T三维矩阵用CNN处理,时间和天气数据用LSTM处理,出行时间率数据是I×J×T三维矩阵用改进的ConvLSTM处理,三个结果再concatenate到一起。

(3)RC layer

上面两部分的结果加到一起,再经过一个CNNlayer,即得到最终的结果。

5、实验结果

实验用了纽约出租车和滴滴的数据,网络划分成11×11的网格,时间间隔10分钟,每个时间间隔又划分成了3个子间隔。

6、数据获取

公众号内回复“纽约”获取纽约出租车数据集下载链接,回复“数据”获取滴滴出租车数据集下载链接。

Attention

如果你和我一样是轨道交通、道路交通、城市规划相关领域的,可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值