深度学习图像卷积后的尺寸计算公式

输入图片大小 W×W
Filter大小 F×F
步长 S
padding的像素数 P

于是我们可以得出:
N = (W − F + 2P )/S+1
输出图片大小为 N×N

如:输入图像为5*5*3,Filter为3*3*3,在zero pad 为1,步长 S=1 (可先忽略这条)则加上zero pad后的输入图像为7*7*3 ,则卷积后的特征图大小为5*5*1
(是这样计算da:(5-3+2*1)/1+1=(2+2)/1+1=4+1=5),与输入图像一样;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值